一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底搞懂,看paper看代码的时候总是一脸懵逼. 大部分分布都能看作是指数族分布,广义差不多是这个意思,我们常见的线性回归和logistic回归都是广义线性回归的特例,可以由它推到出来. 参考:线性回归.logistic回归.广义线性模型——斯坦福CS229机器学习个人总结(一) 对着上面的教程,手写了…
广义线性模型(Generalized Linear Model) http://www.cnblogs.com/sumai 1.指数分布族 我们在建模的时候,关心的目标变量Y可能服从很多种分布.像线性回归,我们会假设目标变量Y服从正态分布,而逻辑回归,则假设服从伯努利分布.在广义线性模型的理论框架中,则假设目标变量Y则是服从指数分布族,正态分布和伯努利分布都属于指数分布族,因此线性回归和逻辑回归可以看作是广义线性模型的特例.那什么是指数分布族呢?若一个分布的概率密度或者概率分布可以写成这个形式,…
最近一直在回顾linear regression model和logistic regression model,但对其中的一些问题都很疑惑不解,知道我看到广义线性模型即Generalized Linear Model后才恍然大悟原来这些模型是这样推导的,在这里与诸位分享一下,具体更多细节可以参考Andrew Ng的课程. 一.指数分布 广义线性模型都是由指数分布出发来推导的,所以在介绍GLM之前先讲讲什么是指数分布.指数分布的形式如下: η是参数,T(y)是y的充分统计量,即T(y)可以完全表…
转载请注明出处:http://www.cnblogs.com/marc01in/p/4775440.html 引 和师弟师妹聊天时经常提及,若有志于从事数据挖掘.机器学习方面的工作,在大学阶段就要把基础知识都带上. 机器学习在大数据浪潮中逐渐展示她的魅力,其实<概率论>.<微积分>.<线性代数>.<运筹学>.<信息论>等几门课程算是前置课程,当然要转化为工程应用的话,编程技能也是需要的,而作为信息管理专业的同学,对于信息的理解.数据的敏感都是很好…
朴素贝叶斯优点:在数据较少的情况下仍然有效,可以处理多类别问题缺点:对于输入数据的准备方式较为敏感适用数据类型:标称型数据朴素贝叶斯决策理论的核心思想:选择具有最高概率的决策朴素贝叶斯的一般过程(1)收集数据:可以使用任何方法.(2)准备数据:需要数值型或者布尔型数据.(3)分析数据:有大量特征时,回值特征作用不大,此时使用直方图效果更好(4)训练算法:计算不同的独立特征的条件概率(5)测试算法:计算错误率(6)使用算法:一个常见的朴素贝叶斯应用是文档分类.可以在任意的分类场景中使用朴素贝叶斯分…
初步理解一下:对于一组输入,根据这个输入,输出有多种可能性,需要计算每一种输出的可能性,以可能性最大的那个输出作为这个输入对应的输出. 那么,如何来解决这个问题呢? 贝叶斯给出了另一个思路.根据历史记录来进行判断. 思路是这样的: 1.根据贝叶斯公式:P(输出|输入)=P(输入|输出)*P(输出)/P(输入) 2.P(输入)=历史数据中,某个输入占所有样本的比例: 3.P(输出)=历史数据中,某个输出占所有样本的比例: 4.P(输入|输出)=历史数据中,某个输入,在某个输出的数量占所有样本的比例…
引言:通过高斯模型得到最小二乘法(线性回归),即:      通过伯努利模型得到逻辑回归,即:      这些模型都可以通过广义线性模型得到.广义线性模型是把自变量的线性预测函数当作因变量的估计值.在机器学习中,有很多模型都是基于广义线性模型的,比如传统的线性回归模型,最大熵模型,Logistic回归,softmax回归,等等.今天主要来学习如何来针对某类型的分布建立相应的广义线性模型. 广义线性模型 广义线性模型:广义线性模型是基于指数分布族(Exponential Family),而指数分布…
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新的信息就是个可能性空间缩小的过程 贝叶斯定理的核心就是,先验*似然=后验,有张图可以完美可视化这个定理 只要我们能得到可靠的先验或似然,任意一个,我们就能得到更可靠的后验概率 最近又在刷一个Coursera的课程:Baye…
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)2) 概率生成模型的分类模型3) 概率判别模型的分类模型4) 全贝叶斯概率的Laplace近似 需要注意的是,有三种形式的贝叶斯:1) 全贝叶斯2) 经验贝叶斯3) MAP贝叶斯我们大家熟知的是 MAP贝叶斯 MAP(poor man…
Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayesian inference 贝叶斯方法的逻辑十分接近人脑的思维:人脑的优势不是计算,在纯数值计算方面,可以说几十年前的计算器就已经超过人脑了. 人脑的核心能力在于推理,而记忆在推理中扮演了重要的角色,我们都是基于已知的常识来做出推理.贝叶斯推断也是如此,先验就是常识,在我们有了新的观测数据后,就可以…