strom:实时的WordCount】的更多相关文章

Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java…
集采单词 package wordcount; import java.io.File; import java.io.IOException; import java.util.Collection; import java.util.List; import java.util.Map; import org.apache.commons.io.FileUtils; import backtype.storm.spout.SpoutOutputCollector; import backty…
一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.fu…
一.Flink概述 官网:https://flink.apache.org/ mapreduce-->maxcompute HBase-->部门 quickBI DataV Hive-->高德地图 Storm-->Jstorm ...... 2019年1月,阿里正式开源flink-->blink Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算. Flink设 计为在所有常见的集群环境中运行,以内存速度和任何规模执行计算. 大数据计算框…
1. Flink Flink介绍: Flink 是一个针对流数据和批数据的分布式处理引擎.它主要是由 Java 代码实现.目前主要还是依靠开源社区的贡献而发展.对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已.再换句话说,Flink 会把所有任务当成流来处理,这也是其最大的特点.Flink 可以支持本地的快速迭代,以及一些环形的迭代任务. Flink的特性: Flink是个分布式流处理开源框架: 1>. 即使数据源是无序的或者晚到达的数据,也能保持结果准确…
一.updateStateByKey 1.概述 SparkStreaming 7*24 小时不间断的运行,有时需要管理一些状态,比如wordCount,每个batch的数据不是独立的而是需要累加的,这时就需要sparkStreaming来维护一些状态, 目前有两种方案updateStateByKey&mapWithState,mapWithState是spark1.6新加入的保存状态的方案,官方声称相比updateStateByKey有10倍性能提升. updateStateByKey底层是将p…
一.概述 1.Socket:之前的wordcount例子,已经演示过了,StreamingContext.socketTextStream() 2.HDFS文件 基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实时处理.相当于处理实时的文件流. streamingContext.fileStream<KeyClass, ValueClass, InputFormatClass>(dataDirectory) streamingContext.fileStre…
输入DStream之基础数据源以及基于HDFS的实时wordcount程序 一.Java方式 二.Scala方式 基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实时处理,相当于处理实时的文件流. streamingContext.fileStream<KeyClass,ValueClass,InputFormatClass>(dataDirectory) streamingContext.fileStream[KeyClass,ValueClass,Inp…
WordCount是很多分布式计算中,最常用的例子,例如Hadoop.Storm,Iveely Computing也不例外.明白了WordCount在Iveely Computing上的运行原理,就很容易写出新的分布式程序.上一篇中已经知道了如何部署Iveely Computing以及提交任务,现在我们将深入WordCount的代码.        一.代码结构 图3-1 从图3-1中,可以看出,类WordCount中,有两个子类WordInput.WordOutput,以及一个主方法,Word…
1.准备工作 2.一个Storm集群的基本组件 3.Topologies 4.Stream 5.数据模型(Data Model) 6.一个简单的Topology 7.流分组策略(Stream grouping) 8.使用别的语言来定义Bolt 9.可靠的消息处理 10.单机版安装指南 本文翻译自: https://github.com/nathanmarz/storm/wiki/Tutorial Storm是一个分布式的.高容错的实时计算系统.Storm对于实时计算的的意义相当于Hadoop对于…