np.mat()和np.transpose】的更多相关文章

例子: import numpy as np dataSet = [] with open('/home/lai/下载/20081023025304.plt') as fr: for line in fr.readlines()[6:]: curline = line.strip().split(',')#字符串方法strip():返回去除两侧(不包括)内部空格的字符串:字符串方法spilt:按照制定的字符将字符串分割成序列 fltline = curline[0:2] fltline = li…
1.Numpy的 tile() 函数,就是将原矩阵横向.纵向地复制.tile 是瓷砖的意思,顾名思义,这个函数就是把数组像瓷砖一样铺展开来. 举个例子,原矩阵: import numpy as np mat = np.array([[1,2], [3, 4]]) 横向: print(np.tile(mat,(1, 4))) #等同于 print(np.tile(mat, 4)) [[1 2 1 2 1 2 1 2] [3 4 3 4 3 4 3 4]] [[1 2 1 2 1 2 1 2] [3…
np.r_:按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat() np.c_:按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的merge() import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = np.c_[a,b] print(np.r_[a,b]) print(c) print(np.c_[c,a]) 结果如下: [1 2 3 4 5 6…
本文转自豆瓣_燃烧的影子 图灵机与可计算性 图灵(1912~1954)出生于英国伦敦,19岁进入剑桥皇家学院研究量子力学和数理逻辑.1935年,图灵写出了"论高斯误差函数"的论文,因此他从一名学生直接成为学院的研究员,并开始了"可计算性"研究.1936年4月,图灵发表了"可计算数及其在判定问题上的一个应用"的论文,形成了"图灵机"的重要思想.用反证法证明,任何可计算其值的函数都存在相应的图灵机:反之,不存在相应图灵机的函数就是…
output   array([[ 0.24747071, -0.43886742],   [-0.03916734, -0.70580089],   [ 0.00462337, -0.51431584],   ...,   [ 0.15071507, -0.57029653],   [ 0.06246116, -0.33766761],   [ 0.08218585, -0.59906501]], dtype=float32)       ipdb> np.shape(output)   (6…
>> import numpy as np >> help(np.repeat) >> help(np.tile) 二者执行的是均是复制操作: np.repeat:复制的是多维数组的每一个元素: np.tile:复制的是多维数组本身: 1. np.repeat >> x = np.arange(1, 5).reshape(2, 2) >> np.repeat(x, 2) array([1, 1, 2, 2, 3, 3, 4, 4]) # 对数组中…
1. np.asarray -- numpy 风格的类型转换 从已有多维数组创建新的多维数组,数据类型可重新设置 >> B = np.asarray(A, dtype='int32') 2. np.array() vs np.asarray 源码之前,了无秘密. 两者的区别和联系,铜通过查看源码,一目了然: def asarray(a, dtype=None, order=None): return array(a, dtype, copy=False, order=order) 两者主要的区…
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/luo/anaconda3/envs/tf2019/lib/python3.6/site-packages/tensorflow/__init__.py", line 24, in <module> from tensorflow.python import * Fi…
python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等. 1. 原始数据:假如要拟合的数据yyy来自sin函数,np.sin import numpy as np import matplotlib.pyplot as plt xxx = np.arange(0, 1000) # x值,此时表示弧度 yyy = np.sin(xxx*np.pi/180) #函数值,转化成度 2. 测试不同阶的多项式,例如7阶多项式拟合,使用np.polyfit拟合,np…
import sys reload(sys) sys.setdefaultencoding('utf-8') import numpy as np def test(): ''' numpy函数np.c_和np.r_学习使用 ''' data_list1=[4,6,12,6,0,3,7] data_list2=[1,5,2,65,6,7,3] data_list3=[1,5,2,65,6] print u'np.r_ data_list1和data_list2合并' print np.r_[da…
np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgrid 与np.ogrid的目的都是为创建一个格栅区域,而mgrid返回的是相同维度的数组,ogrid仅返回本维度的数组,而创建格栅区域可以i这样理解:如果要确定一点(x,y),则对于mgrid返回值而言,首先取出所有数组的第x行,然后再第x行取出第y个数字,因此,mgrid的第一个数组x,每行都是相…
array 和 asarray 都可以将 结构数据 转化为 ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 1.输入为列表时 import numpy as np a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c) """ 运行结果: [[1, 2, 3], […
np.r_是按行连接两个矩阵,就是把两矩阵上下相加,要求列数相等,最终结果的行数为两个矩阵行数和. np.c_是按列连接两个矩阵,就是把两矩阵左右相加,要求行数相等,最终结果的列数等于两矩阵的列数和. np中的矩阵合并np.c_[matrix]只能按照列拼接(横向扩展原来句子的维度) np中的矩阵合并np.r_[matrix]只能按照行拼接(纵向扩展原来样本的数量) np中的矩阵合并np.concatenate([],1为列拼接/0为行拼接) 1)np.concatenate和np.append…
1. 生成数组所需格式不同 mat可以从字符串或列表中生成:array只能从列表中生成 2. 生成的数组计算方式不同 array生成数组,用np.dot()表示矩阵乘积,(*)号或np.multiply()表示点乘 mat生成数组,(*)和np.dot()相同,点乘只能用np.multiply()…
1.生成数组的方式不同 2.乘法计算方式不同 array生成数组,np.dot()表示矩阵乘积,(*)号或np.multiply()表示点乘 mat生成数组,(*)和np.dot()表示矩阵相乘,点乘只能用np.multiply()…
转自CSDN默一鸣 https://blog.csdn.net/yimingsilence/article/details/80004032 在讨论算法的时候,常常会说到这个问题的求解是个P类问题,或者是NP难问题等等,于是我特地搜了这方面的资料,自己总结了下,估计研究算法的大家应该都知道,要是我总结的哪里不对,欢迎一起探讨~ 在讲P类问题之前先介绍两个个概念:多项式,时间复杂度.(知道这两概念的可以自动跳过这部分) 1.多项式:axn-bxn-1+c 恩....就是长这个样子的,叫x最高次为n…
import numpy as np import matplotlib.pyplot as plt def fix_seed(seed=1): #重复观看一样东西 # reproducible np.random.seed(seed) # make up data建立数据 fix_seed(1) x_data = np.linspace(-7, 10, 2500)[:, np.newaxis] #水平轴-7~10 np.random.shuffle(x_data) noise = np.ran…
# -*- coding: utf-8 -*-"""Created on Sat Jun 30 14:49:22 2018 @author: zhen""" import numpy as npa = np.array([[1,2,3],[11,22,33]])b = np.array([[4,5,6],[44,55,66]])# 数组连接成矩阵c = np.c_[a,b]r = np.r_[a,b]print('-------------按行转…
(Numpy中ndarray和array的区别是什么?我在哪儿能够找到numpy中相应的实现?) 答:Well, np.array is just a convenience function to create an ndarray, it is not a class itself. (嗯,np.array只是一个便捷的函数,用来创建一个ndarray,它本身不是一个类) You can also create an array using np.ndarray, but it is not…
1. 线性代数中矩阵乘法: np.dot() import numpy as np ​ # 2 x 3 matrix1 = np.array([[1, 2, 3], [4, 5, 6]]) ​ # 3 x 2 matrix2 = np.array([[1, 2], [3, 4], [5, 6]]) ​ multi = np.dot(matrix1, matrix2) print(multi) [[22 28] [49 64]] 2. 对应元素相乘 np.multiply()或 * matrix3…
来自:爱抠脚的coder np.split(): 该函数的参数要么按照数字划分(int),要么是按列表list划分:如果仅是输入一个int类型的数字,你的数组必须是均等的分割,否则会报错. np.array_split(): array_split()可以进行不均等划分. 按列表中的数字,在3,5,6,10位置处分割. 一旦不均等就会报错: x = np.arange(8) y = np.split(x, 3) print(y) 报错为: ValueError: array split does…
What is the difference between flatten and ravel functions in numpy? 两者的功能是一致的,将多维数组降为一维,但是两者的区别是返回拷贝还是返回视图,np.flatten(0返回一份拷贝,对拷贝所做修改不会影响原始矩阵,而np.ravel()返回的是视图,修改时会影响原始矩阵 import numpy as np a = np.array([[1 , 2] , [3 , 4]]) b = a.flatten() print('b:…
np.r_:是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat(). np.c_:是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的merge(). import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = np.c_[a,b] print(np.r_[a,b]) print('\n') print(c) print('\n') print(np…
转自:https://blog.csdn.net/ui_shero/article/details/78881067 1.np.linspace() 生成(start,stop)区间指定元素个数num的list,均匀分布 Parameters ---------- start : scalar  #scalar:标量 The starting value of the sequence. stop : scalar The end value of the sequence, unless `e…
转载自 https://blog.csdn.net/u012609509/article/details/70230204 Python中的几种矩阵乘法 1. 同线性代数中矩阵乘法的定义: np.dot() np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义.对于一维矩阵,计算两者的内积.见如下Python代码: import numpy as np # 2-D array: 2 x 3 two_dim_matrix_one = np.array([[1…
1. 参数 首先比较二者的参数部分: np.max:(a, axis=None, out=None, keepdims=False) 求序列的最值 最少接收一个参数 axis:默认为列向(也即 axis=0),axis = 1 时为行方向的最值: np.maximum:(X, Y, out=None) X 与 Y 逐位比较取其大者: 最少接收两个参数 2. 使用上 >> np.max([-2, -1, 0, 1, 2]) 2 >> np.maximum([-2, -1, 0, 1,…
aroundnp.around 返回四舍五入后的值,可指定精度. around(a, decimals=0, out=None) a 输入数组 decimals 要舍入的小数位数. 默认值为0. 如果为负,整数将四舍五入到小数点左侧的位置 · # -*- coding: utf-8 -*-"""@author: tz_zs"""import numpy as np n = np.array([-0.746, 4.6, 9.4, 7.447, 10…
本文链接:https://blog.csdn.net/m0_37393514/article/details/79538748在这里我们介绍两个拼接数组的方法: np.vstack():在竖直方向上堆叠 np.hstack():在水平方向上平铺 import numpy as nparr1=np.array([1,2,3])arr2=np.array([4,5,6])print np.vstack((arr1,arr2)) print np.hstack((arr1,arr2)) a1=np.a…
1.np.max(a, axis=None, out=None, keepdims=False) 求序列的最值 最少接受一个参数 axis默认为axis=0即列向,如果axis=1即横向 ex: >> np.max([-2, -1, 0, 1, 2]) 2 2.np.maximum(X, Y, out=None) X和Y逐位进行比较,选择最大值. 最少接受两个参数 ex: >> np.maximum([-3, -2, 0, 1, 2], 0) array([0, 0, 0, 1, …
np.max(a, axis=None, out=None, keepdims=False) # 接收一个参数a # 取a 在 axis方向上的最大值 np.maximum(x, y) # 接收两个参数x,y # x,y逐位比较取最大值…