Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The i-th area contains ai animals in it. Also there are m roads in the zoo, and each road connects two distinct areas. Naturally the zoo is connected, so…
题目链接:Codeforces 437D The Child and Zoo 题目大意:小孩子去參观动物园,动物园分非常多个区,每一个区有若干种动物,拥有的动物种数作为该区的权值.然后有m条路,每条路的权值为该条路连接的两个区中权值较小的一个.假设两个区没有直接连接,那么f值即为从一个区走到还有一个区中所经过的路中权值最小的值做为权值.问,平均两个区之间移动的权值为多少. 解题思路:并查集+贪心.将全部的边依照权值排序,从最大的開始连接,每次连接时计算的次数为连接两块的节点数的积(乘法原理).…
Codeforces 437D The Child and Zoo 题目大意: 有一张连通图,每个点有对应的值.定义从p点走向q点的其中一条路径的花费为途径点的最小值.定义f(p,q)为从点p走向点q的所有路径中的最大花费.累加每一对p,q的f(p,q),并求平均值. 乍一看以为是对图的搜索,但搜索求和的过程肯定会超时.这一题巧妙的用到了并查集,因此做简单记录. 思路: 将边的权值定义为两点间的较小值,对边进行降序排序.排序后将每条边的两点进行并查集维护,由于排了序,所以可以保证两个点所属集合合…
[BZOJ4025]二分图(线段树分治,并查集) 题面 BZOJ 题解 是一个二分图,等价于不存在奇环. 那么直接线段树分治,用并查集维护到达根节点的距离,只计算就好了. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<vector> us…
[CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出现时间是区间,所以线段树分治. 既然路径最小值就是异或最小值,并且可以不是简单路径, 不难让人想到\(WC2011\)那道最大\(Xor\)路径和. 用一样的套路,我们动态维护一棵生成树,碰到一个非树边, 就把这个环的异或和丢到线性基里面去,这样子直接查就好了. 动态维护生成树直接用并查集就好了,没…
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The i-th area contains ai animals in it. Als…
Dash Speed Online Judge:NOIP2016十联测,Claris#2 T3 Label:好题,分治,并查集按秩合并,LCA 题目描述 比特山是比特镇的飙车圣地.在比特山上一共有 n 个广场,编号依次为 1 到 n,这些广场之间通过 n − 1 条双向车道直接或间接地连接在一起,形成了一棵树的结构. 因为每条车道的修建时间以及建筑材料都不尽相同,所以可以用两个数字 li, ri 量化地表示一条车道 的承受区间,只有当汽车以不小于 li 且不大于 ri 的速度经过这条车道时,才不…
考试的时候用了两个树状数组去优化,暴力修改,树状数组维护修改后区间差值还有最终求和,最后骗了40分.. 这道题有好多种做法,求和好说,最主要的是开方.这道题过的关键就是掌握一点:在数据范围内,最多开方五六次就会变成1,这样以后再修改就不用修改了. ①  线段树打标记 ②  分块打标记 ③  树状数组+并查集 因为我考试的时候用的树状数组,所以直接打的第三种,相对来说代码量也少一些. 思路:开始时父亲都指向自己,如果变成1,就把父亲指向下一个位置即可.修改的时候相当于跳着修改.代码当中会有注解.…
Stability Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Total Submission(s): 1347    Accepted Submission(s): 319 Problem Description Given an undirected connected graph G with n nodes and m edges, with possibly r…
题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$m\le 5\times 10^5$ . 题解 树的直径+并查集+LCT 与直径相关的结论1:与一个点距离最大的点为任意一条直径的两个端点之一. 与直径相关的结论2:两棵树之间连一条边,新树直径的两个端点一定为第一棵树直径的两个端点和第二棵树直径的两个端点这四者中之二. 于是问题就变简单了,用并查集…