Spark Sql之ThriftServer和Beeline的使用】的更多相关文章

概述 ThriftServer相当于service层,而ThriftServer通过Beeline来连接数据库.客户端用于连接JDBC的Server的一个工具 步骤 1:启动metastore服务 ./sbin/start-thriftserver.sh 2:连接 [rachel@bigdata-senior01 spark--bin]$ ./bin/beeline Beeline version .spark2 by Apache Hive beeline> !connect jdbc:hiv…
1.Spark SQL概述 1)Spark SQL是Spark核心功能的一部分,是在2014年4月份Spark1.0版本时发布的. 2)Spark SQL可以直接运行SQL或者HiveQL语句 3)BI工具通过JDBC连接SparkSQL查询数据 4)Spark SQL支持Python.Scala.Java和R语言 5)Spark SQL不仅仅是SQL 6)Spark SQL远远比SQL要强大 7)Spark SQL处理数据架构 8)Spark SQL简介 Spark SQL is a Spar…
转载请注明出处:http://www.cnblogs.com/xiaodf/ 之前的博客介绍了通过Kerberos + Sentry的方式实现了hive server2的身份认证和权限管理功能,本文主要介绍Spark SQL JDBC方式操作Hive库时的身份认证和权限管理实现. ThriftServer是一个JDBC/ODBC接口,用户可以通过JDBC/ODBC连接ThriftServer来访问SparkSQL的数据.ThriftServer在启动的时候,会启动了一个sparkSQL的应用程序…
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession 创建 DataFrames 无类型的Dataset操作 (aka DataFrame 操作) Running SQL Queries Programmatically 全局临时视图 创建Datasets RDD的互操作性 使用反射推断Schema 以编程的方式指定Schema Aggregatio…
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataSet1.2.4 三者的共性1.2.5 三者的区别第2章 执行 Spark SQL 查询2.1 命令行查询流程2.2 IDEA 创建 Spark SQL 程序第3章 Spark SQL 解析3.1 新的起始点 SparkSession3.2 创建 DataFrames3.3 DataFrame 常用操…
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession 创建 DataFrames 无类型的Dataset操作 (aka DataFrame 操作) Running SQL Queries Programmatically 全局临时视图 创建Datasets RDD的互操作性 使用反射推断Schema 以编程的方式指定Schema Aggregatio…
Spark SQL可以使用JDBC/ODBC或命令行接口充当分布式查询引擎.这种模式,用户或者应用程序可以直接与Spark SQL交互,以运行SQL查询,无需编写任何代码. Spark SQL提供两种方式来运行SQL: 通过运行Thrift Server 直接执行Spark SQL命令行 运行Thrift Server方式 1.先运行Hive metastore nohup hive --service metastore & 2.在 hdfs-site.xml 中添加以下配置 <prope…
# export by: spark.sql("SET -v").show(n=200, truncate=False) key value meaning spark.sql.adaptive.enabled false When true, enable adaptive query execution. spark.sql.adaptive.shuffle.targetPostShuffleInputSize 67108864b The target post-shuffle i…
本教程记录 spark 1.3.1 版本的thriftserver 的metastore 对接 postgresql postgresql 的编译,参考:http://www.cnblogs.com/chenfool/p/4530925.html 一 启动postgresql 服务 1 首先需要将postgresql 的lib 加载到 LD_LIBRARY_PATH 环境变量中 export LD_LIBRARY_PATH=/opt/sequoiadb/lib:${LD_LIBRARY_PATH…
Spark SQL主要提供了两个工具来访问hive中的数据,即CLI和ThriftServer.前提是需要Spark支持Hive,即编译Spark时需要带上hive和hive-thriftserver选项,同时需要确保在$SPARK_HOME/conf目录下有hive-site.xml配置文件(可以从hive中拷贝过来).在该配置文件中主要是配置hive metastore的URI(Spark的CLI和ThriftServer都需要)以及ThriftServer相关配置项(如hive.serve…
*以下内容由<Spark快速大数据分析>整理所得. 读书笔记的第六部分是讲的是Spark SQL和Beeline. Spark SQL是Spark用来操作结构化和半结构化数据的接口. 一.在应用中使用Spark SQL 二.Spark SQL UDF VS. Hive UDF 三.Beeline 一.在应用中使用Spark SQL Spark SQL提供了一种特殊的RDD,叫作SchemaRDD.SchemaRDD是存放Row对象的RDD,每个Row对象代表一行记录.SchemaRDD还包含记…
thriftserver和beeline的简单配置和使用启动thriftserver: 默认端口是10000 ,可以修改 $ ./${SPARK_HOME}/sbin/start-thriftserver.sh --master local[2] --jars ~/software/mysql-connector-java-5.1.27-bin.jar 同样需要通过 --jars 传入mysql驱动启动beeline beeline -u jdbc:hive2://localhost:10000…
HDFS HDFS架构 1.Master(NameNode/NN) 对应 N个Slaves(DataNode/NN)2.一个文件会被拆分成多个块(Block)默认:128M例: 130M ==> 128M + 2M3.NameNode.DataNode负责内容:NN:1)负责客户端请求的响应2)负责元数据(文件名称.副本系数.Block存放的DN)的管理DN:1)存储用的文件对应的数据块(Block)2)定期向NN发送心跳信息(默认3秒),汇报本身及其所有的Block信息,健康状况4. 重要提示…
0. 说明 DataSet 介绍 && Spark SQL 访问 JSON 文件 && Spark SQL 访问 Parquet 文件 && Spark SQL 访问 JDBC 数据库 && Spark SQL 作为分布式查询引擎 1. DataSet 介绍 强类型集合,可以转换成并行计算. Dataset 上可以执行的操作分为 Transfermation 和 Action ,类似于 RDD. Transfermation 生成新的 Dat…
来源: 慕课网 Spark SQL慕课网日志分析_大数据实战 目标: spark系列软件的伪分布式的安装.配置.编译 spark的使用 系统: mac 10.13.3 /ubuntu 16.06,两个系统都测试过 软件: hadoop,hive,spark,scala,maven hadoop伪分布式.spark伪分布式 详细: software 存放安装的软件包 app 所有软件的安装目录 data 课程中所有使用的测试数据目录 source 软件源码目录,spark 1)下载hadoop a…
本篇文章主要记录最近在使用spark sql 时遇到的问题已经使用心得. 1 spark 2.0.1 中,启动thriftserver 或者是spark-sql时,如果希望spark-sql run on hdfs,那样需要增加参数 "--conf spark.sql.warehouse.dir=hdfs://HOSTNAME:9000/user/hive/warehouse" 例如启动thriftserver: bin/start-thriftserver.sh --master s…
上一篇博客我向大家介绍了如何快速地搭建spark run on standalone,下面我将介绍saprk sql 如何对接 hdfs 我们知道,在spark shell 中操作hdfs 上的数据是很方便的,但是操作也未免过于繁琐,幸好spark 还想用户提供另外两种操作 spark sql 的方式 一 spark-sql 启动方式也比较简单 如果不添加 hive.metastore.warehouse.dir hiveconf 这个参数,则启动的spark sql 是基于本地文件的,默认为…
Spark SQL是一个用来处理结构化数据的Spark组件,前身是shark,但是shark过多的依赖于hive如采用hive的语法解析器.查询优化器等,制约了Spark各个组件之间的相互集成,因此Spark SQL应运而生. Spark SQL在汲取了shark诸多优势如内存列存储.兼容hive等基础上,做了重新的构造,因此也摆脱了对hive的依赖,但同时兼容hive.除了采取内存列存储优化性能,还引入了字节码生成技术.CBO和RBO对查询等进行动态评估获取最优逻辑计划.物理计划执行等.基于这…
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark SQL相关的知识,如果对Spark不熟的同学可以先看看之前总结的两篇文章: [原]Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令 [原]Learning Spark (Python版) 学习笔记(二)----键值对.数据读取与保存.共享特性 #####…
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel…
Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating DataFrames) 2.3 DataFrame操作(DataFrame Operations) 2.4 运行SQL查询程序(Running…
Spark SQL 之 Performance Tuning & Distributed SQL Engine 转载请注明出处:http://www.cnblogs.com/BYRans/ 缓存数据至内存(Caching Data In Memory) Spark SQL可以通过调用sqlContext.cacheTable("tableName") 或者dataFrame.cache(),将表用一种柱状格式( an in­memory columnar format)缓存至内…
Spark SQL CLI描述 Spark SQL CLI的引入使得在SparkSQL中通过hive metastore就可以直接对hive进行查询更加方便:当前版本中还不能使用Spark SQL CLI与ThriftServer进行交互. 使用Spark SQL CLI前需要注意: 1.将hive-site.xml配置文件拷贝到$SPARK_HOME/conf目录下: 2.需要在$SPARK_HOME/conf/spark-env.sh中的SPARK_CLASSPATH添加jdbc驱动的jar…
Spark SQL是Spark中用于结构化数据处理的组件. Spark SQL可以从Hive中读取数据. 执行结果是Dataset/DataFrame. DataFrame是一个分布式数据容器.然而DataFrame更像传统数据库的二维表格,除了数据以外,还掌握数据的结构信息,即schema.同时,与Hive类似,DataFrame也支持嵌套数据类型(struct.array和map).从API易用性的角度上 看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更…
Spark SQL是为了让开发人员摆脱自己编写RDD等原生Spark代码而产生的,开发人员只需要写一句SQL语句或者调用API,就能生成(翻译成)对应的SparkJob代码并去执行,开发变得更简洁 注意:本文全部基于SparkSQL1.6 参考:http://spark.apache.org/docs/1.6.0/ 一. API Spark SQL的API方案:3种 SQL the DataFrames API the Datasets API. 但会使用同一个执行引擎 the same exe…
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但因Spark发展迅速(本文的写作时值Spark 1.6.2发布之际,并且Spark 2.0的预览版本也已发布许久),因此请随时关注Spark SQL官方文档以了解最新信息. 文中使用Scala对Spark SQL进行讲解,并且代码大多都能在spark-shell中运行,关于这点请知晓. 概述 相比于…
[From] https://blog.csdn.net/u010990043/article/details/82842995 最近整理了一下spark SQL内置配.加粗配置项是对sparkSQL 调优性能影响比较大的项,小伙伴们按需酌情配置.后续会挑出一些通用调优配置,共大家参考.有不正确的地方,欢迎大家在留言区留言讨论. 配置项 默认值 概述 spark.sql.optimizer.maxIterations 100 sql优化器最大迭代次数 spark.sql.optimizer.in…
最近一直在银行做历史数据平台的项目,目前整个项目处于收尾的阶段,也好有时间整理下在项目中的一些收获. 该历史数据平台使用spark+Nosql架构了,Nosql提供了海量数据的实时查询,而spark提供了sql支持,最开始给客户设计方案的时候,对spark sql也不是很熟悉,只知道它的thriftserver可以支持JDBC,在做方案的设计的使用,Spark SQL提供了对外查询的接口.在测试中发现,spark sql的sql是一个执行完成后才能执行另一个,就是换了fair这种作业调度方式,整…
如果用户希望在spark sql 中,执行某个sql 后,将其结果集保存到本地,并且指定csv 或者 json 格式,在 beeline 中,实现起来很麻烦.通常的做法是将其create table tempTable as *** ,通过将结果集写入到新的临时表中,进行保存,然后再通过其他方式export 到本地. 这种方式,对于 HDFS 是可行到,但是如果数据是保存在像SequoiaDB 中,就比较难办了.因为spark 向 SequoiaDB 写入记录时,可能部分task 会失败重试,这…
前言 第1章   为什么Spark SQL? 第2章  Spark SQL运行架构 第3章 Spark SQL组件之解析 第4章 深入了解Spark SQL运行计划 第5章  测试环境之搭建 第6章 Spark SQL之基础应用 第7章 ThriftServer和CLI 第8章 Spark SQL之综合应用 第9章 Spark SQL之调优 第10章 总结 Spark SQL中的两个重要概念Tree和Rule.然后介绍一下Spark SQL的两个分支sqlContext和hiveContext…