训练时的实时状态跟踪的重要性 不言而喻. [Tensorboard] Cookbook - Tensorboard  讲解调节更新频率 直接上代码展示: import numpy as np import tensorflow as tf from random import randint import datetime import os import time import implementation as imp batch_size = imp.batch_size iteratio…
Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking  本文目标在于 tracking performance 和 efficiency 之间达到一种平衡.将 tracking 过程分解为两个并行但是相互协作的部分: 一个用于快速的跟踪(fast tracking): 另一个用于准确的验证(accurate verification). 本文的 Motivation…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
import datetime import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils, datasets from tensorflow import summary %load_e…
Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is copied from: https://github.com/foolwood/benchmark_results  Thanks for the careful list of visual tracking provided by foolwood  Visual Trackers CVPR20…
解读一:Features for Multi-Target Multi-Camera Tracking and Re-identification Abstract MTMCT:从多个摄像头采集的视频中跟踪多个人. Re-id:从一系列图片中检索与一张被查询图片相似的图片. 我们用CNN为MTMCT和Reid学习好的特征. 贡献包括: ①为训练设计的一个自适应权重的三重损失 ②一种新的艰难身份挖掘技术 我们测验了好的re-id和好的MTMCT分数之间的相关性,并且做了消融研究,以阐明系统主要成分…
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer format than this) maintained by @karpathy NEW: This year I also embedded the (1,2-gram) tfidf vectors of all papers with t-sne and placed them in an interf…
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society 2017, ISBN 978-1-5386-1032-9 Oral Session 1 Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Corre…
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0.9713.今天我们完成day40-42的课程,实现猫.狗的识别. 本文数据集下载地址 https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.…
在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: decay_mult: } param { lr_mult: decay_mult: } convo…