【转载】VC维,结构风险最小化】的更多相关文章

以下文章转载自http://blog.sina.com.cn/s/blog_7103b28a0102w9tr.html 如有侵权,请留言,立即删除. 1 VC维的描述和理解 给定一个集合S={x1,x2,...xd},如果一个假设类H(hypothesis h ∈ H)能够实现集合S中所有元素的任意一种标记方式,则称H能够打散S.有了打散的定义,就得到VC维的定义:H的VC维表示能够被H打散的最大集合的大小.若H能分散任意大小的集合,那么VC(H)为无穷大. ​VC维反应的是hypothesis…
前言: 经历过文本的特征提取,使用LibSvm工具包进行了测试,Svm算法的效果还是很好的.于是开始逐一的去了解SVM的原理. SVM 是在建立在结构风险最小化和VC维理论的基础上.所以这篇只介绍关于SVM的理论基础.参考this paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 文本分类学习(三)特征权重…
一.什么是SVM? SVM(Support Vector Machine)又称为支持向量机,是一种二分类的模型.当然如果进行修改之后也是可以用于多类别问题的分类.支持向量机可以分为线性和非线性两大类.其主要思想为找到空间中的一个更够将所有数据样本划开的超平面,并且使得本集中所有数据到这个超平面的距离最短. 那么,又怎么表示这个“都正确”呢?可以这样考虑:就是让那些“很有可能不正确”的数据点彼此分开得明显一点就可以了.对于其它“不那么可能不正确”或者说“一看就很正确”的数据点,就可以不用管了.这也…
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学习性提供了坚实的理论基础,但有时候,特别是对我们工程师而言…
VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC…
VC维在有限的训练样本情况下,当样本数 n 固定时.此时学习机器的 VC 维越高学习机器的复杂性越高. VC 维反映了函数集的学习能力,VC 维越大则学习机器越复杂(容量越大). 所谓的结构风险最小化就是在保证分类精度(经验风险)的同一时候,减少学习机器的 VC 维,能够使学习机器在整个样本集上的期望风险得到控制. 经验风险和实际风险之间的关系,注意引入这个原因是什么? 由于训练误差再小也就是在这个训练集合上,实际的推广能力不行就会引起过拟合问题. 所以说要引入置信范围也就是经验误差和实际期望误…
在做svm的时候我们碰到了结构风险最小化的问题,结构风险等于经验风险+vc置信范围,当中的vc置信范围又跟样本的数量和模型的vc维有关,所以我们看一下什么是vc维 首先看一下vc维的定义:对一个指标函数集,假设存在H个样本可以被函数集中的函数按全部可能的2的H次方种形式分开,则称函数集可以把H个样本打散:函数集的VC维就是它能打散的最大样本数目H 比如有个样本,一个函数可以将这h个样本打散,打散指的是样本最后被分类的情况有2^h种可能.则这个函数可以打散的最大样本数就是vc维 例如以下图所看到的…
本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. Hoeffding不等式 -> 学习可行的两个核心条件 -> 有效假设 -> 成长函数 -> VC维 以下为原文: 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypothese…
原文链接:解读机器学习基础概念:VC维来去 作者:vincentyao 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学习性提供了坚实的理论基础,但有时候,…
一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出是连续的.具体的值(如具体房价123万元)不同,逻辑回归的输出是0~1之间的概率,但可以把它理解成回答“是”或者“否”(即离散的二分类)的问题.回答“是”可以用标签“1”表示,回答“否”可以用标签“0”表示. 比如,逻辑回归的输出是“某人生病的概率是多少”,我们可以进一步理解成“某人是否生病了”.设…