【机器学习】Learning to Rank 简介】的更多相关文章

Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值.L2R将机器学习的技术很好的应用到了排序中,并提出了一些新的理论和算法,不仅有效地解决了排序的问题,其中一些算法(比如LambdaRank)的思想非常新颖,可以在其他领域中进行借鉴.鉴于排序在许多领域中的核心地位,L2R可以被广泛的应用在信息(文档)检索,协同过滤等领域. 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩.李航等人的…
转自:http://www.cnblogs.com/kemaswill/archive/2013/06/01/3109497.html,感谢分享! 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩.李航等人的几篇相关文献[1,2,3],我们将围绕以下几点来介绍L2R:现有的排序模型,为什么需要使用机器学习的方法来进行排序,L2R特征的选取,L2R训练数据的获取,L2R训练和测试,L2R算法分类和简介,L2R效果评价等. 1.现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,…
Learning to Rank是采用机器学习算法,通过训练模型来解决排序问题,在Information Retrieval,Natural Language Processing,Data Mining等领域有着很多应用. 1. 排序问题 如图 Fig.1 所示,在信息检索中,给定一个query,搜索引擎会召回一系列相关的Documents(通过term匹配,keyword匹配,或者semantic匹配的方法),然后便需要对这些召回的Documents进行排序,最后将Top N的Documen…
Learning to Rank pointwise \[ L\left(f ; x_{j}, y_{j}\right)=\left(y_{j}-f\left(x_{j}\right)\right)^{2} \] 只考虑给定查询下单个文档的绝对相关度,不考虑其他文档和给定查询的相关度. 输入空间中样本是单个 doc(和对应 query)构成的特征向量: 输出空间中样本是单个 doc(和对应 query)的相关度: 假设空间中样本是打分函数: 损失函数评估单个 doc 的预测得分和真实得分之间差异…
Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介).LTR有三种主要的方法:PointWise,PairWise,ListWise.Ranking SVM算法是PointWise方法的一种,由R. Herbrich等人在2000提出, T. Joachims介绍了一种基于用户Cli…
声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要可以分为以下两类:相关度排序模型和重要性排序模型. 1.1 相关度排序模型(Relevance Ranking Model) 相关度排序模型根据查询和文档之间的相似度来对文档进行排序.常用的模型包括:布尔模型(Boolean Model),向量空间模型(Vector Space Model),隐语义…
排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介).LTR有三种主要的方法:PointWise,PairWise,ListWise.Ranking SVM算法是PointWise方法的一种,由R. Herbrich等人在2000提出, T. Joachims介绍了一种基于用户Clickthrough数据使用Ranking SVM来进行排序的方法…
排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介).LTR有三种主要的方法:PointWise,PairWise,ListWise. RankNet是一种Pairwise方法, 由微软研究院的Chris Burges等人在2005年ICML上的一篇论文Learning to Rank Using Gradient Descent中提出,并被应…
Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索.自然语言处理.数据挖掘等场景中具有重要的作用.其达到的效果是:给定一组文档,对任意查询请求给出反映文档相关性的文档排序.本文简单介绍一下 L2R 的基本算法及评价指标. 背景 随着互联网的快速发展,L2R 技术也越来越受到关注,这是机器学习常见的任务之一.信息检索时,给定一个查询目标,我们需要算出最符合要求的结果并返回,这里面涉及一些特征计算.匹配等算法,对于海量的数据,如果仅靠人工来干预其…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…