kNN进邻算法】的更多相关文章

K-近邻算法 一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算法模型实际上就是对特征空间的的划分.模型有三个基本要素:距离度量.K值的选择和分类决策规则的决定. 距离度量 距离定义为: \[L_p(x_i,x_j)=\left( \sum^n_{l=1} |x_i^{(l)} - x_j^{(l)}|^p \right) ^{\frac{1}{p}}\] 一般…
一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算法模型实际上就是对特征空间的的划分.模型有三个基本要素:距离度量.K值的选择和分类决策规则的决定. 距离度量 距离定义为: Lp(xi,xj)=(∑l=1n|x(l)i−x(l)j|p)1pLp(xi,xj)=(∑l=1n|xi(l)−xj(l)|p)1p 一般使用欧式距离:p = 2的个情况 Lp(xi,xj)…
1. K-近邻算法概述(k-Nearest Neighbor,KNN) K-近邻算法采用测量不同的特征值之间的距离方法进行分类.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 优点:精度高.对异常数据不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型. KNN工作原理是:存在一个样本数据集合(训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类…
机器学习 K-近邻算法(KNN) 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 后打开浏览器输入网址http://localhost:8888/ 导引 如何进行电影分类 众所周知,电影可以按照题材分类,然而题材本身是如何定义的?由谁来判定某部电影属于哪 个题材?也就是说同一题材的电影具有哪些公共特征?这些都是在进行电影分类时必须要考虑的问 题.没有哪个电影人会说自己制作的电影和以前的某部电影类似,但我们确实知道每…
K-近邻算法(KNN)概述  KNN是通过测量不同特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20的整数.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3…
机器学习:K-近邻算法(KNN) 一.KNN算法概述 KNN作为一种有监督分类算法,是最简单的机器学习算法之一,顾名思义,其算法主体思想就是根据距离相近的邻居类别,来判定自己的所属类别.算法的前提是需要有一个已被标记类别的训练数据集,具体的计算步骤分为一下三步: 1.计算测试对象与训练集中所有对象的距离,可以是欧式距离.余弦距离等,比较常用的是较为简单的欧式距离: 2.找出上步计算的距离中最近的K个对象,作为测试对象的邻居: 3.找出K个对象中出现频率最高的对象,其所属的类别就是该测试对象所属的…
1.算法工作原理 存在一个训练样本集,我们知道样本集中的每一个数据与所属分类的对应关系,输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应特征进行比较,然后算法提取样本集中特征最相似的数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处.通常k是不大于20的整数. 比如匹配是爱情片,还是动作片,将已知电影和未知电影比较,算出距离 假如k = 3,前三部又是爱情片,所以我们可判定此电影为爱情片. 2.算法流程 1.准备:使用pytho…
导引: 如何进行电影分类 众所周知,电影可以按照题材分类,然而题材本身是如何定义的?由谁来判定某部电影属于哪 个题材?也就是说同一题材的电影具有哪些公共特征?这些都是在进行电影分类时必须要考虑的问 题.没有哪个电影人会说自己制作的电影和以前的某部电影类似,但我们确实知道每部电影在风格 上的确有可能会和同题材的电影相近.那么动作片具有哪些共有特征,使得动作片之间非常类似, 而与爱情片存在着明显的差别呢?动作片中也会存在接吻镜头,爱情片中也会存在打斗场景,我们 不能单纯依靠是否存在打斗或者亲吻来判断…
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法主要是用来进行分类的. KNN 场景 电影可以按照题材分类,那么如何区分 动作片 和 爱情片 呢? 动作片:打斗次数更多 爱情片:亲吻次数更多 基于电影中的亲吻.打斗出现的次数,使用 k-近邻算法构造程序,就可以自动划分电影的题材类型. 现在根据上面我们得到的样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到 k 个距离最近的电影. 假定 k=3,则三个最靠近的电影依次是, He's Not…
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法主要是用来进行分类的. KNN 场景 电影可以按照题材分类,那么如何区分 动作片 和 爱情片 呢? 动作片:打斗次数更多 爱情片:亲吻次数更多 基于电影中的亲吻.打斗出现的次数,使用 k-近邻算法构造程序,就可以自动划分电影的题材类型. 现在根据上面我们得到的样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到 k 个距离最近的电影. 假定 k=3,则三个最靠近的电影依次是, He's Not…
k-近邻算法(kNN)---它的工作原理是:存在一个样本数据集合,也称做训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据得到分类. 1. 说明一下,文本数据格式…
一.k-近邻算法(kNN) 采用测量不同特征值之间的距离方法进行分类 工作原理: 存在一个样本数据集合(训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征醉相思数据(最近邻)的分类标签. 一般来说,我们只选择样本数据集中前k个最相似的数据,(k的来源),通常k<=20的整数,选择k个最相似数据中出现次数最多的分类,作为新数据的分类. 一般流程:收集-准备…
K-近邻算法(k-Nearest Neighbor,简称kNN)采用测量不同特征值之间的距离方法进行分类,是一种常用的监督学习方法,其工作机制很简单:给定测试样本,基于某种距离亮度找出训练集中与其靠近的k个训练样本,然后基于这k个"邻居"的信息进行预测.kNN算法属于懒惰学习,此类学习技术在训练阶段仅仅是把样本保存起来,训练时间靠小为零,在收到测试样本后在进行处理,所以可知kNN算法的缺点是计算复杂度高.空间复杂度高.但其也有优点,精度高.对异常值不敏感.无数据输入设定. 借张图来说:…
1 前言 Kjin邻法(k-nearest neighbors,KNN)是一种基本的机器学*方法,采用类似"物以类聚,人以群分"的思想.比如,判断一个人的人品,只需观察他来往最密切的几个人的人品好坏就可以得出.这里就运用了KNN的思想.KNN方法可以做分类,也可以做回归,这点和决策树算法相同. KNN做回归和分类的主要区别在于做预测时候的决策方式不同. KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最jin的K个样本,预测为里面有最多类别数的类别. KNN做回归时…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
收集数据——>准备数据——>分析数据——>训练算法——>测试算法——>使用算法 K-近邻算法: (1)计算已知类别数据集中的点与当前点之间的距离 (2)按照距离递增次序排序 (3)选取与当前点距离最小的k个点 (4)确定前K个点所在类别的出现频率 (5)返回前K个点出现频率最高的类别作为当前点的预测分类 准备数据集: ​ 进行分类: ​​​​​ ​ 运行结果: ​​​​​…
最近邻算法可以说是最简单的分类算法,其思想是将被预测的项归类为和它最相近的项相同的类.我们通过简单的计算比较即将被预测的项与已有训练集中各项的距离(差距),选择其中差距最小的一项,该项的类别即为我们即将预测的类别. 下表为我们即将使用的数据集,所有的点分为红色和蓝色两种,我们随机给出一个坐标位置,然后预测其应该属于的类别. 代码如下: import math """ 此python程序用来实现最近邻算法 """ def dot_distance(…
最近在参加大数据的暑期培训,记录一下学习的东西. 引言 懒惰学习法:简单的存储数据,并且一直等待,直到给定一个检验数据,才进行范化,以便根据与存储的训练元组的相似性对该检验数据进行分类.懒惰学习法在 训练元组的时候只做少量的工作,而在进行分类或者数值预测时做更多的工作.由于懒惰学习法存储训练元组或实例,也被称为基于实例的学习法. K-近邻算法是简单的分类与回归方法,属于懒惰学习法. K-近邻算法的基本做法:给定一个训练数据集,在训练数据集中找到与未知实例最邻近的K个训练集中的实例,这K个实例的多…
机器学习可分为监督学习和无监督学习.有监督学习就是有具体的分类信息,比如用来判定输入的是输入[a,b,c]中的一类:无监督学习就是不清楚最后的分类情况,也不会给目标值. K-近邻算法属于一种监督学习分类算法,该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 需要进行分类,分类的依据是什么呢,每个物体都有它的特征点,这个就是分类的依据,特征点可以是很多,越多分类就越精确. 机器学习就是从样本中学习分类的方式,那么就需…
内容主要来源于机器学习实战这本书.加上自己的理解. 1.KNN算法的简单描写叙述 K近期邻(k-Nearest Neighbor.KNN)分类算法能够说是最简单的机器学习算法了. 它採用測量不同特征值之间的距离方法进行分类. 它的思想非常easy:假设一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别.则该样本也属于这个类别. 下图是大家引用的一个最经典演示样例图. 比方上面这个图,我们有两类数据,各自是蓝色方块和红色三角形,他们分布在一个上图的二维中间中. 那…
有一句话这样说:如果你想了解一个人,你可以从他身边的朋友开始. 如果与他交往的好友都是一些品行高尚的人,那么可以认为这个人的品行也差不了. 其实古人在这方面的名言警句,寓言故事有很多.例如:人以类聚,物以群分.近朱者赤近墨者黑 其实K-近邻算法和古人的智慧想通,世间万物息息相通,你中有我,我中有你. K-近邻原理: 存在一个训练集,我们知道每一个样本的标签,例如训练样本是一群人,他们都有相应特征,例如,爱喝酒或爱看书或逛窑子或打架斗殴或乐于助人等等,并且知道他们是好人还是坏人,然后来了一个新人(…
py2.7 : <机器学习实战> k-近邻算法 11.19 更新完毕 原文链接 <机器学习实战>第二章k-近邻算法,自己实现时遇到的问题,以及解决方法.做个记录. 1.写一个kNN.py保存了之后,需要重新导入这个kNN模块.报错:no module named kNN. 解决方法:1.将.py文件放到 site_packages 目录下            2.在调用文件中添加sys.path.append("模块文件目录"):import sys sys.…
本章介绍第一个机器学习算法:A-近邻算法,它非常有效而且易于掌握.首先,我们将探讨女-近邻算法的基本理论,以及如何使用距离测量的方法分类物品:其次我们将使用?7««^从文本文件中导人并解析数据: 再次,本书讨论了当存在许多数据来源时,.如何避免计算距离时可能碰到的一些常见错误:最后,利用实际的例子讲解如何使用匕近邻算法改进约会网站和手写数字识别系统. 一.K-近邻算法概述--------->K-近邻算法采用测量不同特征值之间的距离方法进行分类. 工作原理是:存在一个样本数据集合,也称作训练样本集…
k-近邻算法(kNN)采用测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 使用数据范围:数值型和标称型 工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-…
本章内容k-近邻分类算法从文本文件中解析和导人数据 使用Matplotlib创建扩散图归一化数值 2.1 k-近邻算法概述简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类.…
最近在<机器学习实战>里学习了一些基本的算法,对于一个纯新手我也在网上找了写资料,下面就我在书上所看的加上在其他博客上的内容做一个总结,博客请参照http://www.cnblogs.com/BaiYiShaoNian/p/4567446.html K-近邻算法 K-近邻算法就是采用测量不同特征值之间的距离方法来进行分类. 优点:精度高,对异常值不敏感,无数据输入假定. 缺点:计算复杂度高,空间复杂度高. 适用范围:数值型和标称型. 工作原理: 存在一个样本数据集合,也称作训练样本集,并且样本…
本章内容 ================================ (一)什么是k-近邻分类算法 (二)怎样从文件中解析和导入数据 (三)使用Matplotlib创建扩散图 (四)对数据进行归一化 ================================= (一) 什么是k-近邻分类算法 简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类,k-近邻是一种有监督的分类算法. k-近邻的工作原理:存在一个样本数据集,也称之为训练样本集,并且样本集中的每个数据都存在标签,即…
为了简单起见,这里构造的系统只能识别数字0到9,需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素的黑白图像.尽管采用文本格式存储图像不能有效地利用内存空间,但是为了方便理解,我们还是将图像转换为文本格式. ---1.收集数据:提供文本文件 该数据集合修改自“手写数字数据集的光学识别”-一文中的数据集合,该文登载于2010年10月3日的UCI机器学习资料库中http://archive.ics.uci.edu/ml.        ---2.准备数据:将图像转换为测试…
摘自:<机器学习实战>,用python编写的(需要matplotlib和numpy库) 海伦一直使用在线约会网站寻找合适自己的约会对象.尽管约会网站会推荐不同的人选,但她没有从中找到喜欢的人.经过一番总结,她发现曾交往过三种类型的人: 1.不喜欢的人( 以下简称1 ): 2.魅力一般的人( 以下简称2 ): 3.极具魅力的人(以下简称3 ) 尽管发现了上述规律,但海伦依然无法将约会网站推荐的匹配对象归入恰当的分类.她觉得可以在周一到周五约会哪些魅力一般的人,而周末则更喜欢与那些极具魅力的人为伴…
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月04日 22:54:26所撰写内容(http://blog.csdn.net/qq_37608890/article/details/78714664).     本文根据最近学习机器学习书籍 网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.k-近邻算法(k-Nearest Neighbor,KNN)概述 1.简…