精确率与回召率与 F1-Meature】的更多相关文章

例子: true positive(真正例): 把 Colin power预测为Colin power(55) false positive(假正例): 把 其他人预测为Colin power(4+1+3+1+3) false negative(假负例): 把 Colin power预测为其他人(8) 精确率 precision precision = true positive /(true positive + false positive) 回召率 recall recall = true…
参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难,但是好多朋友都遇到了一个相同的问题,那就是:每次看书的时候都很明白,但回过头就忘了,经常容易将概念弄混.还有的朋友面试之前背下来了,但是一紧张大脑一片空白全忘了,导致回答的很差. 我在之前的面试过程中也遇到过类似的问题,我的面试经验是:一般笔试题遇到选择题基本都会考这个率,那个率,或者给一个场景让…
[白话解析] 通过实例来梳理概念 :准确率 (Accuracy).精准率(Precision).召回率(Recall)和F值(F-Measure) 目录 [白话解析] 通过实例来梳理概念 :准确率 (Accuracy).精准率(Precision).召回率(Recall)和F值(F-Measure) 0x00 摘要 0x01 本文缘由 0x02 例子构建 0x03 混淆矩阵 3.1 四种分类情况 3.2 混淆矩阵 0x04 准确率 Accuracy 4.1 公式 4.2 特点 0x05 精准率…
接单率/成单率的解释 接单率计算方法为:成功接单的订单数 除以 系统派单的订单数. 成单率计算方法为:成功完成的订单数 除以 系统派单的订单数. 滴滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://didi-uber.com/archives/108.html 优步奖励低/不挣钱/怎么办?看这里:http://didi-uber.com/archives/96.html 打豪车应用:ub…
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切,所以在了解这些评价指标之前,先知道什么是混淆矩阵很有必要,也方便记忆. 1.混淆矩阵 对于一个二分类问题,我们可以得到如表 1所示的的混淆矩阵(confusion matrix): 表…
import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model.logistic import LogisticRegression from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics…
classification_report简介 sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息. 主要参数: y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值. y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值. labels:array,shape = [n_labels],报表中包含的标签索引的可选列表. target_names:字符串列表,与标签匹配的可选显示…
假设有两类样本,A类和B类,我们要衡量分类器分类A的能力. 现在将所有样本输入分类器,分类器从中返回了一堆它认为属于A类的样本. 召回率:分类器认为属于A类的样本里,真正是A类的样本数,占样本集中所有真正A类样本的比例.也就是说,如果分类器认为所有样本都属于A类,那么它的召回率一定是100%,因为它认为的A类样本里一定包含了所有真正的A类样本. 精确率:分类器认为属于A类的样本里,真正的A类样本占它认为是A的样本数的比例.也就是说,如果分类器觉得所有样本里就1个属于A类,那么如果这个样本真的属于…
脚本文件如下: #!/bin/bash #Author:Mr.Ding #Created Time:2018-08-26 07:23:44 #Name:ping.sh #Description: shibai="/root/scripts/shell/ping_shibai.txt" yanchigao="/root/scripts/shell/yanchigao.txt" . /etc/init.d/functions for i in `cat IP_list`…
Paper reading. #@author: gr #@date: 2014-03-11 #@email: forgerui@gmail.com Early Detection Abstract: Structured Output SVM Processing Sequential Data Detecing Facial Expressions, Hand Gestures, Human Acctivities 1. Introduction 1.1. potential applica…