GAN——ModeCollapse】的更多相关文章

GAN——ModeCollapse 2017年05月21日 13:54:31 LiuSpark 阅读数 6821更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/SPARKKKK/article/details/72598041 大部分内容来源于李宏毅的课程[1] Example 先给一个直观的例子,这个是在我们训练GAN的时候经常出现的 这就是所谓的Mode…
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train th…
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodfellow 在 14 年发表了 论文 Generative Adversarial Nets 以来,生成式对抗网络 GAN 广受关注,加上学界大牛 Yann Lecun 在 Quora 答题时曾说,他最激动的深度学习进展是生成式对抗网络,使得 GAN 成为近年来在机器学习领域的新宠,可以说,研究机器…

GAN

GAN(Generative Adversarial Nets),产生式对抗网络 存在问题: 1.无法表示数据分布 2.速度 3.resolution太小,大了无语义信息 4.无reference 5.intend to generate same image 论文摘要: 1.Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems.…
前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条件的 GAN,和不加约束条件的GAN,我们先来搭建一个简单的 MNIST 数据集上加约束条件的 GAN. 首先下载数据:在  /home/your_name/TensorFlow/DCGAN/ 下建立文件夹 data/mnist,从 http://yann.lecun.com/exdb/mnist/…
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保存训练过程中采样器的采样图片,在 train.py 中输入如下代码: # -*- coding: utf-8 -*- import tensorflow as tf import os from read_data import * from utils import * from ops impo…
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27343585 本文完整代码地址:Generative Adversarial Networks (GANs) with 2D Samples 50行GAN代码的问题 Dev Nag写的50行代码的GAN,大概是网上流传最广的,关于GAN最简单的小例子.这是一份用一维均匀样本作为特征空间(latent space)样本,经过生成网络变换后,生成高斯分布样本的代码.结构非常清晰,却有一个奇怪的问题,就是判别器(Disc…
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基本驾驶技能: 1) 去除(爱情)动作片中的马赛克 2) 给(爱情)动作片中的女孩穿(tuo)衣服 生成式模型 上一篇<用GAN生成二维样本的小例子>中已经简单介绍了GAN,这篇再简要回顾一下生成式模型,算是补全一个来龙去脉. 生成模型就是能够产生指定分布数据的模型,常见的生成式模型一般都会有一个用…
​GAN应用集中在图像生成,NLP.Robt Learning也有拓展.类似于NLP中的Actor-Critic. https://arxiv.org/pdf/1610.01945.pdf . Generative Adversarial Nets.构建两个网络,一个G生成网络,一个D区分网络.训练,G网络loss log(1-D(G(z))),D网络loss -(log(D(x))+log(1-D(G(z))),不是Cross Entropy.数据输入,G网络输入noise.D输入混合G输出数…
用MXNet实现mnist的生成对抗网络(GAN) 生成式对抗网络(Generative Adversarial Network,简称GAN)由一个生成网络与一个判别网络组成.生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本.判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来.而生成网络则要尽可能地欺骗判别网络.两个网络相互对抗.不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真…
同步自我的知乎专栏文章:https://zhuanlan.zhihu.com/p/32135185 从Slerp说起 ICLR'2017的投稿里,有一篇很有意思但被拒掉的投稿<Sampling Generative Networks> by Tom White.文章比较松散地讲了一些在latent space挺有用的采样和可视化技巧,其中一个重要的点是指出在GAN的latent space中,比起常用的线性插值,沿着两个采样点之间的"弧"进行插值是更合理的办法.实现的方法就…
GAN 自从被提出以来,就广受大家的关注,尤其是在计算机视觉领域引起了很大的反响,但是这么好的理论是否可以成功地被应用到自然语言处理(NLP)任务呢? Ian Goodfellow 博士 一年前,网友在 reddit 上提问道,生成式对抗网络 GAN 是否可以应用到自然语言处理上.GAN 理论的提出者,OpenAI 的科学家,深度学习理论奠基人之一 Yoshua Bengio 的得意门生 Ian Goodfellow 博士回答了这个问题: GANs 目前并没有应用到自然语言处理(NLP)中,因为…
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬创公开课]的GAN分享.GAN现在对于无监督图像标注来说是个神器,不过在NLP领域用的还不是那么广泛. 笔者看来,深度学习之前都没有对数组分布进行细致考察,譬如之前我对NLP词向量就产生过很多疑虑,为啥这么长条的数据组,没看到很好地去深挖.解读词向量的分布?分布这么重要,不值得Dig Deep? 生成模型GA…
生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-) GAN原理介绍 说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://a…
生成对抗网络(Generative Adversarial Networks,GANs),由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域.2016年,GANs热潮席卷AI领域顶级会议,从ICLR到NIPS,大量高质量论文被发表和探讨.Yann LeCun曾评价GANs是"20年来机器学习领域最酷的想法". Generative Adversarial Nets(GAN) Generative Adversarial Networks论文提出了一种通过对抗过…
我实现GAN网络结构比较复杂: 通过建立两个一模一样的网络,他们相对应的层共享权重,一个网络用来跟新D model另一个网络用来更新G model 更新G model的网络,D部分只进行梯度传递,不进行参数跟新. 更新D model的网络,G部分直接不进行backward 源码连接: https://github.com/longriyao/caffe_GAN…
深度学习之 GAN 进行 mnist 图片的生成 mport numpy as np import os import codecs import torch from PIL import Image import PIL def get_int(b): return int(codecs.encode(b, 'hex'), 16) def extract_image(path, extract_path): with open(path, 'rb') as f: data = f.read(…
一.前述 GAN,生成对抗网络,在2016年基本火爆深度学习,所有有必要学习一下.生成对抗网络直观的应用可以帮我们生成数据,图片. 二.具体 1.生活案例 比如假设真钱 r 坏人定义为G  我们通过 G 给定一个噪音X 通过学习一组参数w 生成一个G(x),转换成一个真实的分布. 这就是生成,相当于造假钱. 警察定义为D 将G(x)和真钱r 分别输入给判别网络,能判别出真假,真钱判别为0,假钱判别为1 .这就是判别. 最后生成网络想让判别网络判别不出来什么是真实的,什么是假的.要想生成的更好,则…
reference: GAN 讲解 https://blog.csdn.net/u010900574/article/details/53427544 命令行解析 https://blog.csdn.net/qq_24193303/article/details/80810892 命令行解析的坑 https://blog.csdn.net/qq_25964837/article/details/79077504 注意其内部参数 from __future__ import print_funct…
目录 相关背景 主要内容 MSMT17 Person Transfer GAN(PTGAN) 总结 注:原创不易,转载请务必注明原作者和出处,感谢支持! 相关背景 行人再识别(Person Re-identification, Person ReID)是指给定一个行人的图片/视频(probe),然后从一个监控网络所拍摄的图片/视频(gallery)库中识别出该行人的这个一个过程.其可以看做是一个基于内容的图像检索(CBIR)的一个子问题. 论文题目:Person Transfer GAN to…
概述:在前期的文章中,我们用TensorFlow完成了对手写数字的识别,得到了94.09%的识别准确度,效果还算不错.在这篇文章中,笔者将带领大家用GAN模型,生成我们想要的手写数字. GAN简介 对抗性生成网络(GenerativeAdversarial Network),由 Ian Goodfellow 首先提出,由两个网络组成,分别是generator网络(用于生成)和discriminator网络(用于判别).GAN网络的目的就是使其自己生成一副图片,比如说经过对一系列猫的图片的学习,g…
Conditional GAN 参考链接: https://arxiv.org/pdf/1611.07004v1.pdf…
生成式对抗网络(Generative Adversarial Network,简称GAN),主要由两部分构成:生成模型G和判别模型D.训练GAN就是两种模型的对抗过程. 生成模型:利用任意噪音(random noise)来产生一个样本. 判别模型:判断一个样本是真实的(real),还是生成模型产生的(fake). 对抗过程 两种模型都不断提升自己.生成模型总是尽可能产生一个接近真实的样本.判别模型总是尽可能分辨出生成模型产生的样本.直到判别模型无法判断一个样本是真实的,还是生成模型产生的. 极小…
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的神经网络只能解决关于辨识的问题,并不能够为机器带来自主创造的能力,例如让机器写出一篇流畅的新闻报道,生成一副美丽的风景画.但随着GAN的出现,这些都成为了可能. 什么是GAN? 生成式对抗网络(GAN, Generative Adversarial Networks)是一种近年来大热的深度学习模型,…
论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Towards_Diverse_and_ICCV_2017_paper.pdf Implementation(Torch): https://github.com/doubledaibo/gancapt…
生成器对应于认知器的逆过程. 这一切的起源都是当初一个极具启发性的思想:Sleep-wake algorithm——人睡眠时整理记忆做梦,是一个生成的过程,即通过最终的识别结果企图恢复接收到的刺激,当然,恢复得到的是梦境而已,那个梦中的视觉.听觉.触觉以及嗅觉等等全和现实有关却也无关.有关是认知层次的有关,无关是表现出的内容的无关.sleep时进行生成,wake时进行认知.这个过程交替进行就构成了sleep-wake算法.它是一个宽松模型,或者说是一个Monte Carlo采样的EM逼近训练过程…
1.GAN目标函数不收敛,参数难调 2.数据集与生成集比例 3.生成四不像,模式崩塌…
Valse 2017 | 生成对抗网络(GAN)研究年度进展评述 https://www.leiphone.com/news/201704/fcG0rTSZWqgI31eY.html?viewType=weixin 雷锋网按:2017 年 4 月 21-23 日,VALSE(视觉与学习青年学者研讨会)在厦门举行,国内 CV 领域顶级专家学者齐聚一堂,参会的青年学者达 2000 多人.在 VALSE 的「年度进展评述」环节,共有 12 名学者依次上台,对 CV 研究和应用分支领域近年发展做了详细系…
侧脸生成正脸我一直很感兴趣,老早就想把这块理一理的.今天来给大家分享一篇去年的老文章,如果有不对的地方,请斧正. Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis 文章下载地址: https://arxiv.org/abs/1704.04086 有很多公众号和博客都写过了,翻译的文字我觉得有些生硬.俗话说,一…
https://www.tinymind.cn/competitions/ai 生成式对抗网络(GAN)是近年来大热的深度学习模型. 目前GAN最常使用的场景就是图像生成,作为一种优秀的生成式模型,GAN引爆了许多图像生成的有趣应用.在图像生成模型的质量上,生成对抗网络技术可以说实现了飞跃,很多衍生模型已经在一定程度上解决了特定场景中的图像生成问题.此外,诸如文本到图像的生成.图像到图像的生成等应用研究也让工业界与学术界都非常“兴奋”,为人工智能行业带来了非常多的可能性. 为了带大家领略GAN的…