python 进程池和任务量变化测试】的更多相关文章

今天闲,测试了下concurrent.futures 模块中的ThreadPoolExecutor,ProcessPoolExecutor. 对开不同的数量的进程池和任务量时,所耗时间. from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import requests import time,os def get_page(url): #print('<%s> is getting [%s]'%(os.g…
进程池 import multiprocessing import time def do_calculation(data): print(multiprocessing.current_process().name + " " + str(data)) time.sleep(3) return data * 2 def start_process(): print ('Starting', multiprocessing.current_process().name) if __n…
本文转至http://www.cnblogs.com/kaituorensheng/p/4465768.html,在其基础上进行了一些小小改动. 在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效.Pool可以提供指定数量的进程供用户…
之前文章对python中进程池的原理.数据流以及应用从代码角度做了简单的剖析,现在让我们回头看看标准库中对进程池的实现都有哪些值得我们学习的地方.我们知道,进程池内部由多个线程互相协作,向客户端提供可靠的服务,那么这些线程之间是怎样做到数据共享与同步的呢?在客户端使用apply/map函数向进程池分配任务时,使用self._taskqueue来存放任务元素,_taskqueue定义为Queue.Queue(),这是一个python标准库中的线程安全的同步队列,它保证通知时刻只有一个线程向队列添加…
之前文章中介绍了python中multiprocessing模块中自带的进程池Pool,并对进程池中的数据结构和各个线程之间的合作关系进行了简单分析,这节来看下客户端如何对向进程池分配任务,并获取结果的. 我们知道,当进程池中任务队列非空时,才会触发worker进程去工作,那么如何向进程池中的任务队列中添加任务呢,进程池类有两组关键方法来创建任务,分别是apply/apply_async和map/map_async,实际上进程池类的apply和map方法与python内建的两个同名方法类似,ap…
python中两个常用来处理进程的模块分别是subprocess和multiprocessing,其中subprocess通常用于执行外部程序,比如一些第三方应用程序,而不是Python程序.如果需要实现调用外部程序的功能,python的psutil模块是更好的选择,它不仅支持subprocess提供的功能,而且还能对当前主机或者启动的外部程序进行监控,比如获取网络.cpu.内存等信息使用情况,在做一些自动化运维工作时支持的更加全面.multiprocessing是python的多进程模块,主要…
# -*- coding: utf- -*- """ Created on Thu Mar :: @author: lilide """ #import time import requests from concurrent.futures import ProcessPoolExecutor def fetch_request(url): result = requests.get(url) #print(result.text) retur…
当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法. 初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求:但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例: im…
回到python,用一下python的进程池. 记得之前面试的时候,面试官问:你知道进程池的默认参数吗? 我没有回答上来,后来才知道,是有默认参数的.下面就看看它的默认参数 1. 不加参数 from multiprocessing.pool import Pool from time import sleep def fun(a): sleep(5) print(a) if __name__ == '__main__': p = Pool() # 这里不加参数,但是进程池的默认大小,等于电脑CP…
平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘__main__’ :语句的下面,才能正常使用Windows下的进程模块.Unix/Linux下则不需要. Pool类 Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求.如果池满,请求就会告知先等待,直到池中有进程结束, 才会…