from __future__ import division, print_function, absolute_import import tflearn import numpy as np import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import tensorflow as tf step_radians = 0.001 steps_of_history = 10…
Tensorflow[LSTM]   0.背景 通过对<tensorflow machine learning cookbook>第9章第3节"implementing_lstm"进行阅读,发现如下形式可以很方便的进行训练和预测,通过类进行定义,并利用了tf中的变量重用的能力,使得在训练阶段模型的许多变量,比如权重等,能够直接用在预测阶段.十分方便,不需要自己去做一些权重复制等事情.这里只是简单记录下这一小节的源码中几个概念性的地方. # 定义LSTM模型 class LS…
TensorFlow LSTM Attention 机制图解 深度学习的最新趋势是注意力机制.在接受采访时,现任OpenAI研究主管的Ilya Sutskever提到,注意力机制是最令人兴奋的进步之一,他们在这里进行投入.听起来令人兴奋但是什么是注意机制? 基于人类视觉注意机制,神经网络中的注意机制非常松散.人的视觉注意力得到了很好的研究,虽然存在着不同的模式,但它们基本上都是以"低分辨率"感知周围的图像,以"高分辨率"的方式集中在图像的某个区域,然后随着时间的推移…
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为什么选取了这个模型? 3.模型的数据从哪里来? 4.模型的优化过程? 5.项目可以进一步提升的方向. 对于以比特币为首的数字货币近期的表现,只能用疯狂来形容.来自比特币交易平台的最新价格行情显示,就在此前一天,比特币盘中最高价格达到29838.5元,距离3万元大关仅有咫尺之遥.比特币最近火热的行情,…
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为什么选取了这个模型? 3.模型的数据从哪里来? 4.模型的优化过程? 5.项目可以进一步提升的方向. 对于以比特币为首的数字货币近期的表现,只能用疯狂来形容.来自比特币交易平台的最新价格行情显示,就在此前一天,比特币盘中最高价格达到29838.5元,距离3万元大关仅有咫尺之遥.比特币最近火热的行情,…
0.背景 通过对<tensorflow machine learning cookbook>第9章第3节"implementing_lstm"进行阅读,发现如下形式可以很方便的进行训练和预测,通过类进行定义,并利用了tf中的变量重用的能力,使得在训练阶段模型的许多变量,比如权重等,能够直接用在预测阶段.十分方便,不需要自己去做一些权重复制等事情.这里只是简单记录下这一小节的源码中几个概念性的地方. # 定义LSTM模型 class LSTM_Model(): def __i…
本节来介绍一下使用 RNN 的 LSTM 来做 MNIST 分类的方法,RNN 相比 CNN 来说,速度可能会慢,但可以节省更多的内存空间. 初始化 首先我们可以先初始化一些变量,如学习率.节点单元数.RNN 层数等: learning_rate = 1e- num_units = num_layer = input_size = time_step = total_steps = category_num = steps_per_validate = steps_per_test = batc…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/limiyudianzi/article/details/80697711 我主要分三篇文章给大家介绍tensorflow的损失函数,本篇为tensorflow自定义损失函数.  (一)tensorflow内置的四个损失函数  (二)其他损失函数  (三)自定义损失函数 自定义损失函数是损失函数章节的结尾,学习自定义损失函数,对于提高分类…
最近用tensorflow写了个OCR的程序,在实现的过程中,发现自己还是跳了不少坑,在这里做一个记录,便于以后回忆.主要的内容有lstm+ctc具体的输入输出,以及TF中的CTC和百度开源的warpCTC在具体使用中的区别. 正文 输入输出 因为我最后要最小化的目标函数就是ctc_loss,所以下面就从如何构造输入输出说起. tf.nn.ctc_loss 先从TF自带的tf.nn.ctc_loss说起,官方给的定义如下,因此我们需要做的就是将图片的label(需要OCR出的结果),图片,以及图…
1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2.LSTM(Long Short Term Memory)长短期记忆神经网络模型 详见LSTM长短期记忆神经网络:http://www.cnblogs.com/pinard/p/6519110.html   3.LSTM长短期记忆神经网络处理Mnist数据集 import tensorflow as…
使用Tensorflow中的神经网络来拟合函数(y = x ^ 3 + 0.7) # -*- coding:utf-8 -*-import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #训练数据 x_data = np.linspace(-6.0,6.0,30)[:,np.newaxis] y_data = np.power(x_data,3) + 0.7 #验证数据 t_data = np.linspa…
欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-03-09 前言: 根据我本人学习 TensorFlow 实现 LSTM 的经历,发现网上虽然也有不少教程,其中很多都是根据官方给出的例子,用多层 LSTM 来实现 PTBModel 语言模型,比如: tensorflow笔记:多层LSTM代码分析 但是感觉这些例子还是太复杂了,所以这里写了个比较简单的版本,虽然不优雅,但是还是比较容易理解. 如果你想了解 LSTM 的原理的…
tensorflow资源整合 使用原生态TensorFlow API来实现各种不同的神经网络结构.虽然原生态的TensorFlow API可以很灵活的支持不同的神经网络结构,但是其代码相对比较冗长,写起来比较麻烦.为了让TensorFlow用起来更加方便,可以使用一些TensorFlow的高层封装. 目前对TensorFlow的主要封装有4个: 第一个是TensorFlow-Slim: 第二个是tf.contrib.learn(之前也被称为skflow): 第三个是TFLearn: 最后一个是K…
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are the "go to" thing when talking about new fads in machine learning. As such, there's a plethora of courses and tutorials out there on the basic vani…
Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目,根据自己的需求进行开发. 很多内容下面这个英文项目: Inspired by https://github.com/jtoy/awesome-tensorflow 官方网站 官网:https://www.tensorflow.org/ 中文:https://tensorflow.google.cn/…
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量表示(Vector Representations of Words) . 循环神经网络(RNN).LSTM(Long-Short Term Memory, LSTM) . 用深度学习网络搭建一个聊天机器人 0. 个人理解 在学习的最开始,我在这里写一个个人对deep leanring和神经网络的粗…
Ref: http://blog.csdn.net/mebiuw/article/details/60780813 Ref: https://medium.com/@erikhallstrm/hello-world-rnn-83cd7105b767 [Nice] Ref: https://medium.com/@erikhallstrm/tensorflow-rnn-api-2bb31821b185 [Nice] Code Analysis Download and pre-preprocess…
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the “go to” thing when talking about new fads in machine learning. As such, there’s a plethora of courses and tutorials out there on the basic vanilla neu…
Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目,根据自己的需求进行开发. 很多内容下面这个英文项目: Inspired by https://github.com/jtoy/awesome-tensorflow 官方网站 官网:https://www.tensorflow.org/ 中文:https://tensorflow.google.cn/…
catalogue . 引言 . LSTM NETWORKS . LSTM 的变体 . GRUs (Gated Recurrent Units) . IMPLEMENTATION GRUs 0. 引言 In this post we’ll learn about LSTM (Long Short Term Memory) networks and GRUs (Gated Recurrent Units).  LSTMs were first proposed in 1997 by Sepp Ho…
导语:本文是TensorFlow实现流行机器学习算法的教程汇集,目标是让读者可以轻松通过清晰简明的案例深入了解 TensorFlow.这些案例适合那些想要实现一些 TensorFlow 案例的初学者.本教程包含还包含笔记和带有注解的代码. 第一步:给TF新手的教程指南 1:tf初学者需要明白的入门准备 机器学习入门笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisit…
https://www.kaggle.com/kakauandme/tensorflow-deep-nn 本人只是负责将这个kernels的代码整理了一遍,具体还是请看原链接 import numpy as np import pandas as pd import tensorflow # settings LEARNING_RATE = 1e-4 # set to 20000 on local environment to get 0.99 accuracy TRAINING_ITERATI…
资源|TensorFlow初学者必须了解的55个经典案例 2017-05-27 全球人工智能 >>>>>>欢迎投稿:news@top25.cn<<<<<< 文章来源:github      采编:lily 本文是TensorFlow实现流行机器学习算法的教程汇集,目标是让读者可以轻松通过清晰简明的案例深入了解 TensorFlow.这些案例适合那些想要实现一些 TensorFlow 案例的初学者.本教程包含还包含笔记和带有注解的代码.…
Time Series Anomaly Detection in Network Traffic: A Use Case for Deep Neural Networks from:https://jask.com/time-series-anomaly-detection-in-network-traffic-a-use-case-for-deep-neural-networks/ Introduction As the waves of the big data revolution cas…
转自1024深度学习 导语:本文是TensorFlow实现流行机器学习算法的教程汇集,目标是让读者可以轻松通过清晰简明的案例深入了解 TensorFlow.这些案例适合那些想要实现一些 TensorFlow 案例的初学者.本教程包含还包含笔记和带有注解的代码. 第一步:给TF新手的教程指南 1:tf初学者需要明白的入门准备 机器学习入门笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_…
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train.Checkpoint :变量的保存与恢复 只保存模型的参数,不保存模型的计算过程 需要导出模型(无需源代码也能运行模型),请参考 SavedModel 可以使用其 save() 和 restore() 方法将 TensorFlow 中所有包含 Checkpointable State 的对象进行保存…
获取源码,请移步笔者的github: tensorflow-serving-tutorial 由于python的灵活性和完备的生态库,使得其成为实现.验证ML算法的不二之选.但是工业界要将模型部署到生产环境上,需要考略性能问题,就不建议再使用python端的服务.这个从训练到部署的整个流程如下图所示: 基本可以把工作分为三块: Saver端 模型的离线训练与导出 Serving端 模型加载与在线预测 Client端 构建请求 本文采用 Saver (python) + Serving (tens…
TensorFlow Lite 是 TensorFlow 在移动和 IoT 等边缘设备端的解决方案,提供了 Java.Python 和 C++ API 库,可以运行在 Android.iOS 和 Raspberry Pi 等设备上.目前 TFLite 只提供了推理功能,在服务器端进行训练后,经过如下简单处理即可部署到边缘设备上. 个人使用总结: 如果我们只使用Tensorflow的高级API搭建模型,那么将TF转TF Lite再转TF lite micro的过程会相对顺利.但是如果我们的模型使用…
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相…
ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直接训练,并且运行. 包含预处理过的 twitter 英文数据集,训练,运行,工具代码,可以运行但是效果有待提高. 数据集 Twitter 数据集: https://github.com/suriyadeepan/datasets 训练 你需要新建一个 model 文件夹来保存训练完的模型 运行这个文…