hadoop之 hadoop 机架感知】的更多相关文章

Hadoop基础-网络拓扑机架感知及其实现 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.网络拓扑结构 在本地网络中,两个节点被称为“彼此近邻”是什么意思?在海量数据处理中,其主要限制因素是节点之间数据的传输速率,即带宽稀缺.这里的想法是将两个节点之间的带宽作为距离的衡量标准.不用衡量节点之间的带宽,实际上很难实现(它需要一个稳定的集群,并且在集群中两两节点对数量是节点数量的平方),hadoop为此采用了一个简单的方法:把网络看作一棵树,两个节点之间的距离是他们到最近共同…
client 向 Active NN 发送写请求时,NN为这些数据分配DN地址,HDFS文件块副本的放置对于系统整体的可靠性和性能有关键性影响.一个简单但非优化的副本放置策略是,把副本分别放在不同机架,甚至不同IDC,这样可以防止整个机架.甚至整个IDC崩溃带来的错误,但是这样文件写必须在多个机架之间.甚至IDC之间传输,增加了副本写的代价,是否有较优的方案来解决这个问题呢? 目录: 常用策略 机架配置 分配原理 常用策略: hdfs 在缺省配置下副本数是3个,通常的策略是: 第一个副本放在和C…
hadoop中声明是有机架感知的功能,能够提高hadoop的性能.平时我们使用的hadoop集群,实际上是从来没有使用上这个功能的. hadoop中所说的 机架感知的实现实际上这样的: hadoop启动时会检查hadoop-default.xml和hadoop-site.xml中的一个配置选项:topology.script.file.name,如果这个选项不为空,hadoop就会认 为这是一个可运行脚本,于是在每检测到一个slave连接上jobtracker时就会把这个slave的IP地址作为…
Hadoop的机架感知 Hadoop有一个“机架感知”特性.管理员可以手工定义每个slave数据节点的机架号.为什么要做这么麻烦的事情?有两个原因:防止数据丢失和提高网络性能.     为了防止数据丢失,Hadoop会将每个数据块复制到多个机器上.想象一下,如果某个数据块的所有拷贝都在同一个机架的不同机器上,而这个机架刚好发生故障了(交换机坏了,或者电源掉了),这得有多悲剧?为了防止出现这种情况,必须要有一个人来记住所有数据节点在网络中的位置,并且用这些知识来确定——把数据的所有拷贝们放在哪些节…
Hadoop参数汇总 linux参数 以下参数最好优化一下: 文件描述符ulimit -n 用户最大进程 nproc (hbase需要 hbse book) 关闭swap分区 设置合理的预读取缓冲区 Linux的内核的IO调度器 JVM参数 Hadoop参数大全 要配置文件: core hdfs yarn mapred 重要性表示如下: 重要 一般 不重要 core-default.xml hadoop.common.configuration.version 配置文件的版本. hadoop.t…
接着上一篇来说.上篇说了hadoop网络拓扑的构成及其相应的网络位置转换方式,本篇主要讲通过两种方式来配置机架感知.一种是通过配置一个脚本来进行映射:另一种是通过实现DNSToSwitchMapping接口的resolve()方法来完成网络位置的映射. hadoop自身是没有机架感知能力的,必须通过人为的设定来达到这个目的.在FSNamesystem类中的resolveNetworkLocation()方法负载进行网络位置的转换.其中dnsToSwitchMapping变量代表了完成具体转换工作…
转载自http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2843015.html 背景 分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群.机架内的机器之间的网络速度通常都会高于跨机架机器之间的网络速度,并且机架之间机器的网络通信通常受到上层交换机间网络带宽的限制. 具体到Hadoop集群,由于hadoop的HDFS对数据文件的分布式存放是按照分…
背景 分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群.机架内的机器之间的网络速度通常都会高于跨机架机器之间的网络速度,并且机架之间机器的网络通信通常受到上层交换机间网络带宽的限制. 具体到Hadoop集群,由于hadoop的HDFS对数据文件的分布式存放是按照分块block存储,每个block会有多个副本(默认为3),并且为了数据的安全和高效,所以hadoop默认对3个副本的存放策略为: 第一个…
Hadoop作为大数据处理的典型平台,在海量数据处理过程中,其主要限制因素是节点之间的数据传输速率.因为集群的带宽有限,而有限的带宽资源却承担着大量的刚性带宽需求,例如Shuffle阶段的数据传输不可避免,所以如何优化带宽资源的占用是一个值得思考的问题.仔细思考下,Hadoop数据传输的需求主要表现在几个方面: Map阶段的数据传输:Map阶段的非本地化任务需要远程拷贝数据块,然而这种带宽消耗在一定程度上不是必要的,如果数据能做到很高程度的本地化可以减少这个阶段的数据传输带来的带宽消耗. Shu…
一.背景 Hadoop 的设计目的:解决海量大文件的处理问题,主要指大数据的存储和计算问题,其中, HDFS 解决数据的存储问题:MapReduce 解决数据的计算问题 Hadoop 的设计考虑:设计分布式的存储和计算解决方案架构在廉价的集群之上,所以,服 务器节点出现宕机的情况是常态.数据的安全是重要考虑点.HDFS 的核心设计思路就是对 用户存进 HDFS 里的所有数据都做冗余备份,以此保证数据的安全 那么 Hadoop 在设计时考虑到数据的安全,数据文件默认在 HDFS 上存放三份.显然,…