TensorFlow 实现线性回归】的更多相关文章

内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建立模型,随机初始化权重和偏置; 模型的参数必须要使用变量 3.求损失函数,误差为均方误差 4.梯度下降去优化损失过程,指定学习率 2.Tensorflow运算API: 1.矩阵运算:tf.matmul(x,w) 2.平方:tf.square(error) 3.均值:tf.reduce_mean(error)…
TensorFlow简单线性回归 将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 直接从 TensorFlow contrib 数据集加载数据.使用随机梯度下降优化器优化单个训练样本的系数. 实现简单线性回归的具体做法 导入需要的所有软件包:                                               …
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能是要看源代码才能理解某个方法的含义,所以今天我们就介绍一下 TensorFlow,这个由谷歌爸爸出品的深度学习框架,文档比较全-以后的我们也都使用这个框架- 0x00 概要 TensorFlow是谷歌爸爸出的一个开源机器学习框架,目前已被广泛应用,谷歌爸爸出品即使性能不是最强的(其实性能也不错),但…
准备数据: import numpy as np import tensorflow as tf import matplotlib.pylot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围 num_points = 1000 vectors_set = [] for i in range(num_points): x1 = np.random.normal(0.0, 0.55) y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0…
1.知识点 """ 模拟一个y = 0.7x+0.8的案例 报警: 1.initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02 解决方法:由于使用了tf.initialize_all_variables() 初始化变量,该方法已过时,使用tf.global_variables_initializer()就…
环境Anaconda 废话不多说,关键看代码 import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' tf.app.flags.DEFINE_integer("max_step", 300, "训练模型的步数") FLAGS = tf.app.flags.FLAGS def linear_regression(): ''' 自实现线性回归 :return: ''' #1.准备1…
多元线性回归的具体实现 导入需要的所有软件包:   因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外,这里添加一个额外的固定输入值将权重和偏置结合起来.为此定义函数 append_bias_reshape().该技巧有时可有效简化编程:   现在使用 TensorFlow contrib 数据集加载波士顿房价数据集,并将其划分为 X_train 和 Y_train.注意到 X_train 包含所需要的特征.可以选择在这里对数据进行归一化处理,也可以添加偏置并对网络数据重…
模型构建 1.示例代码linear_regression_model.py #!/usr/bin/python # -*- coding: utf-8 -* import tensorflow as tf import numpy as np class linearRegressionModel: def __init__(self,x_dimen): self.x_dimen = x_dimen self._index_in_epoch = 0 self.constructModel() s…
学习TensorFlow,在MNIST数据集上建立softmax回归模型并测试 一.代码 <span style="font-size:18px;">from tensorflow.examples.tutorials.mnist import input_data mnist =input_data.read_data_sets('MNIST_data', one_hot=True) import tensorflow astf sess =tf.InteractiveS…
. 首先 Numpy: Numpy是Python的科学计算库,提供矩阵运算. 想想list已经提供了矩阵的形式,为啥要用Numpy,因为numpy提供了更多的函数. 使用numpy,首先要导入numpy: import numpy as np 使用numpy创建数组以list 或tuple作为参数: np.array([,,,]) np.array((,,)) 使用numpy可以指定数据类型: numpy.int32, numpy.int16, numpy.float64 np.array((,…
1.生成高斯分布的随机数 导入numpy模块,通过numpy模块内的方法生成一组在方程 y = 2 * x + 3 周围小幅波动的随机坐标.代码如下: import numpy as np import matplotlib.pyplot as plot def getRandomPoints(count): xList = [] yList = [] for i in range(count): x = np.random.normal(0, 0.5) y = 2 * x + 3 + np.r…
废话不多说,直接开始 1.首先,导入所需的模块: import numpy as np import os import tensorflow as tf 关闭tensorflow输出的一大堆硬件信息 os.environ[' 2.写一个函数generate_data(),用来生成我们所需要的数据,这里使用的线性函数是y = 0.1*x + 0.3,具体解释见注释 def generate_data():#随机生成测试数据 num_points = 1000 vector_set = [] fo…
tensorflow安装 tensorflow安装过程不是很顺利,在这里记录一下 环境:Ubuntu 安装 sudo pip install tensorflow 如果出现错误 Could not findany downloads that satisfy the requirement tensorflow 执行 sudo pip install --upgrade pip sudo pip install tensorflow 如果出现错误 Cannot uninstall 'six'.I…
from __future__ import print_function import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random # Parameters # 模型的超参数 # 学习率 learning_rate = 0.01 # 训练迭代次数 training_epochs = 1000 display_step = 50 # 模拟生成的一段训练数据 # Training…
源码 #> tutorial:https://www.cnblogs.com/xianhan/p/9090426.html # 步骤一:构建模型 # 1.TensorFlow 中的线性模型 ## 占位符(Placeholder):表示执行梯度下降时将实际数据值输入到模型中的一个入口点.例如房子面积 (x) 和房价 (y_). x = tf.placeholder(tf.float32,[None,1]); # X占位一条 Nx1维的向量 ## 变量:表示我们试图寻找的能够使成本函数降到最小的「g…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #使用numpy生成200个随机点 x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis] noise=np.random.normal(0,0.02,x_data.shape) y_data=np.square(x_data)+noise #定义两个placeholder存放输入数据 x=tf.placeho…
1数据读取 1.1数据集解读 1.2引入包 %matplotlib notebook import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.utils import shuffle 1.2.1pandas介绍 1.2.2TensorFlow下安装pandas 1.激活tensorflow: Activate tensorflow 2.安…
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf def linearregression(): X = tf.random_normal([100,1],mean=0.0,stddev=1.0) y_true = tf.matmul(X,[[0.8]]) + [[0.7]] weights = tf.Variable(initial_value=tf.random_normal([1,1]))…
本文主要探索如何使用深度学习框架 MXNet 或 TensorFlow 实现线性回归模型?并且以 Kaggle 上数据集 USA_Housing 做线性回归任务来预测房价. 回归任务,scikit-learn 亦可以实现,具体操作可以查看 线性回归模型的原理与 scikit-learn 实现. 载入数据 import pandas as pd import numpy as np name = '../dataset/USA_Housing.csv' dataset = pd.read_csv(…
TensorFlow是谷歌推出的深度学习平台,目前在各大深度学习平台中使用的最广泛. 一.安装命令 pip3 install -U tensorflow --default-timeout=1800 -i https://mirrors.ustc.edu.cn/pypi/web/simple 上面是不支持GPU的版本,支持GPU版本的安装命令如下 pip3 install -U tensorflow-gpu --default-timeout=1800 -i https://mirrors.us…
tensorflow笔记(一)之基础知识 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7399701.html 前言 这篇notebook将一步步构建一个tensorflow的线性回归的例子,并讲述其中的一些基础知识.我会把notebook文件放在结尾的百度云链接. 首先第一步,要安装tensorflow,这个网上的教程很多,我安装的版本是ubuntu下1.2.1的tensorflow,推荐用pip(一步就好)这里附上一个…
感谢中国人民大学胡鹤老师,课讲得非常好~ 首先,何谓tensor?即高维向量,例如矩阵是二维,tensor是更广义意义上的n维向量(有type+shape) TensorFlow执行过程为定义图,其中定义子节点,计算时只计算所需节点所依赖的节点,是一种高效且适应大规模的数据计算,方便分布式设计,对于复杂神经网络的计算,可将其拆开到其他核中同时计算. Theano--torch---caffe(尤其是图像处理)--deeplearning5j--H20--MXNet,TensorFlow 运行环境…
学习了tensorflow的线性回归. 首先是一个sklearn中makeregression数据集,对其进行线性回归训练的例子.来自腾讯云实验室 import tensorflow as tf import numpy as np class linearRegressionModel: def __init__(self,x_dimen): self.x_dimen=x_dimen self._index_in_epoch=0 self.constructModel() self.sess=…
tensorflow框架整体结构 用张量tensor表示数据:计算图graph表示任务:在会话session中执行context: 通过变量维护状态:通过feed和fetch可以任意的操作(arbitrary operation).赋值.获取数据 TensorFlow的基本使用(基本结构.变量管理.模型持久化) 一.TensorFlow的基本结构 #1.创建计算节点a = tf.constant([1.2, 1.2], name='a')b = tf.constant([1.0, 1.0], n…
前面一篇介绍了用tensorflow实现线性回归模型预测sklearn内置的波士顿房价,现在这一篇就记一下用逻辑回归分类sklearn提供的乳腺癌数据集,该数据集有569个样本,每个样本有30维,为二分类数据集,212个正样本,357个负样本. 首先,加载数据,并划分训练集和测试集: # 加载乳腺癌数据集,该数据及596个样本,每个样本有30维,共有两类 cancer = skd.load_breast_cancer() # 将数据集的数据和标签分离 X_data = cancer.data Y…
TensorFlow框架 关注公众号"轻松学编程"了解更多. 一.简介 ​ TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理. ​ Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端的计算过程. ​ TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. TensorFlow可被用于语音识别和图像识别等多项机器学习和深…
之前我们在使用cnn做图片分类的时候使用了CIFAR-10数据集 其他框架对于CIFAR-10的图片分类是怎么做的 来与TensorFlow做对比. Caffe Keras 安装 官方安装文档: https://github.com/IraAI/caffe-gpu-installation https://github.com/BVLC/caffe/tree/windows windows下安装gpu加速版的caffe mark 使用的数据集依然是CIFAR-10,使用的也依然是卷积神经网络.查…
本文同步自:https://zhuanlan.zhihu.com/p/30738405 本文旨在通过介绍线性回归来引出一些基本概念:h(x),J(θ),梯度下降法 有一组数据: x=[1,2,3,4,5,6,7,8,9,10] y=[1,2,3,4,5,6,7,8,9,10] 要求画一条过原点的直线,穿过上述所有点 这组数据在二维平面表现如下 引入概念,假设函数:h(x).h代表hypothesis 由于是过原点的直线,所以可以列出方程h(x): 先随意假设一个 ,在这先假设 =0.5 ,函数图…
上篇介绍了TensorFlow基本概念和基本操作,本文将利用TensorFlow举例实现线性回归模型过程. 线性回归算法 线性回归算法是机器学习中典型监督学习算法,不同于分类算法,线性回归的输出是整个实数空间R(故也可用线性回归做分类).关于线性回归网络资料很多,算法具体推演不做叙述,这里简要概括基本点. 目标函数y(不考虑噪声形式): 损失函数Loss:      求解方法梯度下降: TensorFlow实现 代码 #!/usr/bin/pyton import tensorflow as t…
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是一个连续的值. 实际上我们第一篇的房价预测就属于线性回归算法,如果把这个模型用于预测,结果是一个连续值而不是有限的分类. 从代码上讲,那个例子更多的是为了延续从TensorFlow 1.x而来的解题思路,我不想在这个系列的第一篇就给大家印象,TensorFlow 2.0成为了完全不同的另一个东西.在Tenso…