tarjan算法的补充POJ2533tarjan求度】的更多相关文章

做题时又遇到了疑惑,说明一开始就没有完全理解 基于dfs的tarjan,搜索时会有四种边 树枝边:DFS 时经过的边,即 DFS 搜索树上的边 前向边:与 DFS 方向一致,从某个结点指向其某个子孙的边 后向边:与 DFS 方向相反,从某个结点指向其某个祖先的边 横叉边:从某个结点指向搜索树中另一子树中的某结点的边 Low(u)为 u 或 u 的子树( 经过最多一条后向边或栈中横叉边) 能够回溯到的最早的栈中结点的次序号. Low(u)=Min { DFN(u), Low(v),(u,v)为树枝…
目录 Tarjan打包总结(求强连通分量.割点和Tarjan-LCA) 强连通分量&缩点 原理 伪代码 板子(C++) 割点 原理 伪代码 最近公共祖先(LCA) 原理 伪代码 板子 Tarjan打包总结(求强连通分量.割点和Tarjan-LCA) 写给自己的Tarjan算法总结,包括求强连通分量.割点和Tarjan-LCA,基础概念就没有废话了,只写自己的理解和板子 强连通分量&缩点 原理 在DFS生成树中,如果一个节点通过其所有子节点的返祖边恰能达到这个节点,那么这些满足条件的点中最高…
小引 看到这个名词-tarjan,大家首先想到的肯定是又是一个以外国人名字命名的算法.说实话真的是很佩服那些算法大牛们,佩服得简直是五体投地啊.今天就遇到一道与求解有向图中强连通分量的问题,我的思路就是遍历图中的每一个点,然后进行深度遍历,看最后能否回归到这个点上.如果可以回归,那么这个点肯定在一个强连通分量上.可是最后想着想着就乱了...... 没办法,自己low啊,就百度了求有向图中强连通分量的算法,于是乎tarjan算法出现在搜索结果上. 下面说一下,tarjan算法用到的一些图的概念.…
强连通分量:1309. [HAOI2006]受欢迎的牛 ★★   输入文件:cow.in   输出文件:cow.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述] 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛 A 认为牛 B受欢迎.这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头牛被所有的牛认为是受欢迎的. [输入格式] 第1行两个整数N,M: 接下来M行,每行两个数A…
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对计算机科学做出的贡献真的很多. 这一篇我就来以他名字命名的Tarjan算法可以O(n)求出无向图的割点和桥. 进一步可以求出无向图的DCC( 双连通分量 ).不止无向图,Tarjan算法还可以求出有向图的SCC( 强连通分量 ). Tarjan算法基于dfs,接下来我们引入几个基本概念. dfn:时…
有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在百科上和别的大神的博客中不太一样,暂且采用百科上的定义) Tarjan算法的功能就是求有向图中的强连通分量 思路: 定义DFNi存放访问到i结点的次序(时间戳),Lowi存放i结点及向i下方深搜到的结点中能追溯到的访问次序最小的结点的访问次序(即这些结点回溯上去能找到的最小的DFN值),找到未被访问…
一.前置知识: 强连通分量:有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大(看清是极大,不是最大)强连通子图,称为强连通分量(strongly connected components).一个点x,若没有点与它强连通,则它自己也是一个强连通分量. 二.算法简述 Tarjan算法是一个…
// 此博文为迁移而来,写于2015年4月14日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vxnx.html UPDATE(20151104):新增Tarjan算法核心代码. 1.前言        我始终记得去年冬天有天吃完饭后,我们在买东西的时候讨论着强连通分量和Tarjan什么的.当时我真的什么都没听懂啊...什么强连通图,强连通分量,极大强连通分量...当然现在还是知道了.         2.概念   …
Tarjan算法是由Robert Tarjan(罗伯特·塔扬,不知有几位大神读对过这个名字) 发明的求有向图中强连通分量的算法. 预备知识:有向图,强连通. 有向图:由有向边的构成的图.需要注意的是这是Tarjan算法的前提和条件. 强连通:如果两个顶点可以相互通达,则称两个顶点 强连通(strongly connected).如果有向图G的每两个顶点都 强连通,称G是一个强连通图.非 强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components).…
算法介绍 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. Tarjan算法是用来求有向图的强连通分量的.求有向图的强连通分量的Tarjan算法是以其发明者Robert Tar…