MATLAB拟合正态分布】的更多相关文章

clear;clc;close all format compact %% 正态分布的拟合 % 生成随机数 num = 50; y = randn(1000,1); x = 1:num; y = hist(y,num); xx = x(:); yy = y(:); % Set up fittype and options. ft = fittype('y0+(a/(w*sqrt(pi/2)))*exp(-2*((x-xc)/w).^2)', 'independent', 'x', 'depend…
方法一:多项式拟合polyfit 1 x=[1 2 3 4 5 6 7 8 9]; 2 3 y=[9 7 6 3 -1 2 5 7 20]; 4 P= polyfit(x, y, 3) %三阶多项式拟合 5 6 xi=0:.2:10; 7 8 yi= polyval(P, xi); %求对应y值 9 10 plot(xi,yi,x,y,'r*'); 运行结果: 多项式系数:P =0.1481 -1.4030 1.8537 8.2698 使用matlab中的ploy2sym函数:y=poly2sy…
前言 最近在工作中需要拟合高斯曲线,在python中可以使用 scipy,相关代码如下: #!/usr/bin/env python # -*- coding=utf-8 -*- %matplotlib inline import numpy as np import pylab as plt from scipy.optimize import curve_fit x = range(10) y = [25,68,144,220,335,199,52,14,5,2] def gaussian2…
mvnrnd - Multivariate normal random numbers This MATLAB function returns an n-by-d matrix R of random vectors chosen from the multivariate normal distribution with mean MU, and covariance SIGMA. 假设n维, (1)R = mvnrnd(MU,SIGMA) 返回一个n维向量(2)r = mvnrnd(MU,…
        同学问的,查了下资料. %需要拟合的点的坐标为(0,-174.802,990.048),(0.472,-171.284,995.463),(0.413,-168.639,1003.55),(0.064,-167.862,1019.55), %(0,-170.357,1035.44),(0,-172.142,1044.78),(0.215,-174.759,1047.84),(0.171,-176.586,1048.13),(0,-179.832,1043.34),(0,181.5…
非线性最小二乘拟合: 解法一:用命令lsqcurvefit function f = curvefun(x, tdata) f = x() + x()*exp() * tdata); %其中x() = a; x() = b; x() = c; %数据输入 tdata = ::; cdata = 1e- * [4.54, 4.99, 5.35, 5.65, 5.90, 6.10, 6.26, 6.39, 6.50, 6.59]; %设定预测值 x0 = [0.2 0.05 0.05]; %非线性拟…
拟合练习: function f = curvefun(x, tdata) f = (x()*x()*x()) / (x()-x()) * ( exp(-x()*tdata)/(x()-x()) + exp(-x()*tdata)/(x()-x()) - (/(x()-x())+/(x()-x()))*exp(-x()*tdata) ); %数据输入 tdata = [ ]; vdata = [ ]; %拟定估计值 x0 = [ ]; x = lsqcurvefit('curvefun', x0…
定义 插值和拟合: 曲线拟合是指您拥有散点数据集并找到最适合数据一般形状的线(或曲线). 插值是指您有两个数据点并想知道两者之间的值是什么.中间的一半是他们的平均值,但如果你只想知道两者之间的四分之一,你必须插值. 拟合 我们着手写一个线性方程图的拟合: y=3x^3+2x^2+x+2 首先我们生成一组数据来分析: x=-5:0.5:5; e=50*rand(1,length(x))-25;%制造[-25,25]的随机数作为误差 y=3*x.^3+2*x.^2+x+2+e;%得到y值 plot(…
摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式曲线拟合的基本理论,对多项式数据拟合原理进行了全方面的理论阐述,同时也阐述了曲线拟合的基本原理及多项式曲线拟合模型的建立.具体记录了多项式曲线拟合的具体步骤,在建立理论的基础上具体实现多项式曲线的MATLAB实现方法的研究,采用MATLAB R2016a的平台对测量的数据进行多项式数据拟合,介绍了M…
关于插值原理,这篇文章里总结过. 插值,是在有限个数据点的情况下,模拟出更多的点来适应实际问题的需要. 拟合,是在已知数据点基础上,以已知点处最小误差为标准,模拟出近似函数. 二者有似,实则不同,matlab提供了基本完整的解决方案. 一.插值 1. 一维插值 (1)拉格朗日插值 经典的拉格朗日插值并没有现成的函数.自行编写如下: input: 相同维度的已知点x0,y0 output:x点处的插值y function y = lagrange(x0,y0,x) % 函数:已知点组(x0,y0)…