自主搭建CNN训练时遇到的问题】的更多相关文章

1.训练太慢 用nimibatch代替fullbatch https://www.cnblogs.com/guoyaohua/p/8724433.html 2.过拟合 最直接的解决过拟合问题的办法是增加训练数据量 使用dropout层 3.损失率波动不下降,欠拟合(梯度消失) Batch Normalization 4.训练开始时后出现损失函数值为nan(梯度爆炸) 学习率太大…
keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) 即损失函数用的是categorical_crossentropy所以,在pycharm中双击shift键,寻找该函数,会出现keras.loss模块中有该函数,进入该函数后, 原函数为: def categorical_crossent…
Keras 是一个兼容 Theano 和 Tensorflow 的神经网络高级包, 用他来组件一个神经网络更加快速, 几条语句就搞定了. 而且广泛的兼容性能使 Keras 在 Windows 和 MacOS 或者 Linux 上运行无阻碍. 今天来对比学习一下用 Keras 搭建下面几个常用神经网络: 回归 RNN回归 分类 CNN分类 RNN分类 自编码分类 它们的步骤差不多是一样的: [导入模块并创建数据] [建立模型] [定义优化器] [激活模型] [训练模型] [检验模型] [可视化结果…
项目介绍   在文章CNN大战验证码中,我们利用TensorFlow搭建了简单的CNN模型来破解某个网站的验证码.验证码如下: 在本文中,我们将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的验证码. 数据集   对于验证码图片的处理过程在本文中将不再具体叙述,有兴趣的读者可以参考文章CNN大战验证码.   在这个项目中,我们现在的样本一共是1668个样本,每个样本都是一个字符图片,字符图片的大小为16*20.样本的特征为字符图片的像素,0代表白色,1代表黑色,每个样本为320个特征,取…
算的的上是自己搭建的第一个卷积神经网络.网络结构比较简单. 输入为单通道的mnist数据集.它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片 第二层 使用5*5的卷积和进行卷积,输出64张特征图,然后使用2*2的池化核进行池化 输出7*7的图片 第三层为全连接层 我们总结有 7*7*64 个输入,输出1024个节点 ,使用relu作为激活函数,增加一个keep_prob的dropout…
现在一直在用TensorFlow训练CNN和LSTM神经网络,但是训练期间遇到了好多坑,现就遇到的各种坑做一下总结 1.问题一;训练CNN的时候出现nan CNN是我最开始接触的网络,我的研究课题就是利用CNN,LSTM等网络对人体动作做识别.动作数据来源于手机的加速度计,做动作的人在固定位置携带手机并做特定动作,实验人员接收手机的加速度计数值并打上特定的动作标签. 在训练CNN网络时一共遇到两处坑,一是遇到在训练期间遇到nan错误,这个错误很常见.nan的错误多源于你的学习率设置的太大或者ba…
论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) 2017年09月28日 11:58:49 阅读数:1814 [ 转载自http://www.yyliu.cn/post/7cabb4ff.html ] CVPR 2017上,清华大学的Zhuang Liu.康奈尔大学的Gao Huang和Kilian Q.Weinberger,以及Facebook研究员Laurens van der Maaten 所作论文Densely Con…
理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/tornadomeet/p/3258122.html 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络. Dropout是指在模型训练时随机让网络某些…
Convolutional Neural Networks: Step by Step implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation. Notation: Superscript \([l]\) denotes an object of the \(l^{th}\)…
1.报错:“db_lmdb.hpp:14] Check failed:mdb_status ==0(112 vs.0)磁盘空间不足.” 这问题是由于lmdb在windows下无法使用lmdb的库,所以要改成leveldb. 但是要注意:由于backend默认的是lmdb,所以你每一次用到生成的图片leveldb数据的时候,都要把“--backend=leveldb”带上.如转换图片格式时: 又如计算图像的均值时: 还有在.prototxt中 data_param { source: "./mys…