Kmeans原理与实现】的更多相关文章

1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 我们在一开始的时候应该就说过,机器学习按照有无标签可以分为"监督学习"和"非监督学习". 监督学习里面的代表算法就是:SVM.逻辑回归.决策树.各种集成算法等等. 非监督学习主要的任务就是通过一定的规则,把相似的数据聚集到一起,简称聚类.我们今天讲的K-Means算法是在非监督学习比较容易理解的一个算法,也是…
11 K-Means 原理及案例 非监督学习 unsupervised learning (非监督学习) ,只有特征值,没有目标值 聚类: 主要方法 - k-means (K - 需要分成的类别数) K-Means步骤 随机设置K个特征空间内的点作为初始的聚类中心 (红,绿,蓝) k=3 (给定) 对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类 中心点作为标记类别,形成3个族群 分别计算这3个族群的平均值,把三个平均值与之前的三个旧中心进行比较.如果相同则结束聚类,如果不相同,把…
0.聚类 聚类就是对大量的未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,聚类属于无监督的学习方法. 1.内在相似性的度量 聚类是根据数据的内在的相似性进行的,那么我们应该怎么定义数据的内在的相似性呢?比较常见的方法是根据数据的相似度或者距离来定义的,比较常见的有: 闵可夫斯基距离/欧式距离 上述距离公式中,当p=2时,就是欧式距离,当p=1时,就是绝对值的和,当p=正无穷时,这个距离变成了维度差最大的那个值. 杰卡德相似系数 一般是…
对Kmeans方法相信大家都会不陌生,这是一种广泛被应用的基于划分的聚类算法.首先对它的核心思想做一个简单的介绍: 算法把n个向量xj(1,2…,n)分为c个组Gi(i=1,2,…,c),并求每组的聚类中心,使得非相似性(或距离)指标的价值函数(或目标函数)达到最小.当选择欧几里德距离为组j中向量xk与相应聚类中心ci间的非相似性指标时,价值函数可定义为:      (1.1) 这里Ji是组i内的价值函数.这样Ji的值依赖于Gi的几何特性和ci的位置.一般来说,可用一个通用距离函数d(xk,ci…
原理 http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html 实现 http://www.cnblogs.com/zjutzz/p/5924762.html 无监督学习之K-均值算法分析与MATLAB代码实现 转载 https://blog.csdn.net/liweibin1994/article/details/77898341 前言 K-均值是一种无监督的聚类算法.首先我们要知道什么是无监督,无监督就是说在数据集中,…
K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法.包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法. 1. K-Means原理初探 K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇.让簇内的点尽量紧密的连在一…
使用k-means对3D网格模型进行分割 由于一些原因,最近在做网格分割的相关工作.网格分割的方法有很多,如Easy mesh cutting.K-means.谱分割.基于SDF的分割等.根据对分割要求的不同,选取合适的分割方法.本文中使用了较为简单的k-means对网格进行分割. K-means原理 K-means是一种简单的聚类方法,聚类属于无监督学习,聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集(x,y,z).聚类的目的是找到每个样本x潜在的类别y,…
一.前述 Kmeans算法一般在数据分析前期使用,选取适当的k,将数据分类后,然后分类研究不同聚类下数据的特点. Kmeans算法是一种无监督的算法. 常用于分组,比如用户偏好. 二.概念及原理 Kmeans原理: 1 随机选取k个中心点 2 遍历所有数据,将每个数据划分到最近的中心点中 3 计算每个聚类的平均值,并作为新的中心点 4 重复2-3,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代. 样本点之间的相似度距离计算: 1.欧氏距离相似度(常用!!!) 2.Jaccard相似度(…
Kmeans聚类算法是十分常用的聚类算法,给定聚类的数目N,Kmeans会自动在样本数据中寻找N个质心,从而将样本数据分为N个类别.下面简要介绍Kmeans聚类原理,并附上自己写的Kmeans聚类算法实现. 一.Kmeans原理 1. 输入:一组数据data,设定需要聚类的类别数目ClusterCnt,设定迭代次数IterCnt,以及迭代截止精度eps    输出:数据data对应的标签label,每一个数据都会对应一个label(范围0 ~ ClusterCnt-1),表示该数据属于哪一类.…
目录 1.定义和区别(优缺点对比) 2.kmeans原理 3.DBSCAN原理 1.定义和区别(优缺点对比) 聚类分为:基于划分.层次.密度.图形和模型五大类: 均值聚类k-means是基于划分的聚类, DBSCAN是基于密度的聚类.区别为: k-means需要指定聚类簇数k,并且且初始聚类中心对聚类影响很大.k-means把任何点都归到了某一个类,对异常点比较敏感.DBSCAN能剔除噪声,需要指定邻域距离阈值eps和样本个数阈值MinPts,可以自动确定簇个数. K均值和DBSCAN都是将每个…
K-Means原理初探 K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇.让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大. 如果我们想直接求上式的最小值并不容易,这是一个NP难的问题,因此只能采用启发式的迭代方法. K-Means采用的启发式方式很简单,用下面一组图就可以形象的描述. 图a表达了初始的数据集,假设k=2.在图b中,我们随机选择了两个k类所对应的类别质心,即图中的红色质心和蓝色质心,然后分别求样本中所有点到这两个质心的距离,并标记…
1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 前面3篇K-Means的博文从原理.优化.使用几个方面详细的介绍了K-Means算法,本文用python语言,详细的为读者实现一下K-Means.代码是本人修改完成,效率虽远不及sklearn,但是它的作用是在帮助同学们能从代码中去理解K-Means算法.后面我会慢慢的把所有的机器学习方面的算法,尽我所能的去实现一遍. 2. KMeans…
1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 在机器学习中有几个重要的python学习包. sklearn:sklearn里面包含了各种机器学习的算法结构 numpy:numpy里面主要是矩阵的运算和数据的处理的内容,和sklearn搭配使用. matplotlib:matplotlib库是用来绘图的. 2. K-Means参数 n_clusters : 聚类的个数k,default…
1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 上一篇博文K-Means原理解析简单清晰的阐述了K-Means的原理和过程.但是还有一些在使用K-Means过程中会遇到的问题,我们本文进行分析和讨论.比如:如何选取初始质心的位置,如何处理距离计算的时候效率低的问题. 2. 选取初始质心的位置 假设我们已经通过上一篇K-Means原理解析确定了质心k的大小,那如何确定k个质心的位置呢?用…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在之前发表的线性回归.逻辑回归.神经网络.SVM支持向量机等算法都是监督学习算法,需要样本进行训练,且 样本的类别是知道的.接下来要介绍的是非监督学习算法,其样本的类别是未知的.非监督学习算法中,比较有代表性 的就是聚类算法.而聚类算法中,又有 分割方法:K-means 分层次方法:ROCK . Chemeleon 基于密度的方法:DBSCAN 基于网格的方法:STING . WaveCluster 以上只是部分算…
1.什么是K-Means? K均值算法聚类 关键词:K个种子,均值聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中 K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇.让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大. 2.k-Means原理 每次计算距离采用的是欧式距离 步…
聚类与分类的区别在于,是在没有给定划分类别的情况下,更具数据相似度进行样本分组的一种办法,是一种非监督的学习算法,聚类的输入时一组未被标记的样本,聚类更具数据自身的距离或者相似度将其划分为若干组,划分的原则是组内距离最小化,而组间(外部)距离最大化. 聚类中的k-means算法 1. k-means工作过程: 下述图片均来自网络 (a)表示两类点 (b)表示随机选取两个点作为中心点 (c)表示测点上述两类点到我们在(b)中随机选定的红色×和蓝色×之间的距离,离哪个中心点近就归为相应的类别,在(c…
1. K-means++原理 K均值聚类属于启发式方法,不能保证收敛到全局最优,初始中心的选择会直接影响聚类结果.K-means是随机选择样本点作为聚类中心,容易造成算法局部收敛或者需要较多迭代次数,而K-means++将初始点的选择转化为概率问题,容易得到更好的初始聚类中心,加速算法收敛.下图是算法的步骤,转载自Yixuan-Xu的博客,有兴趣了解K-means算法的小伙伴可以进传送门看一看. 2.算法实现 利用sklearn的数据库生成数据集 # make datasets X,y=data…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第12篇文章,我们一起来看下Kmeans聚类算法. 在上一篇文章当中我们讨论了KNN算法,KNN算法非常形象,通过距离公式找到最近的K个邻居,通过邻居的结果来推测当前的结果.今天我们要来看的算法同样非常直观,也是最经典的聚类算法之一,它就是Kmeans. 我们都知道,在英文当中Means是平均的意思,所以也有将它翻译成K-均值算法的.当然,含义是一样的,都是通过求均值的方式来获取样本的类簇. 既然知道Kmeans算法…
K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习K-Means的优化变体方法.包括初始化优化K-Means++, 距离计算优化 elkan  K-Means 算法和大数据情况下的优化 Mini Batch K-Means算法. 聚类问题的一些概念: 无监督问题:我们的手里没有标签了 聚类:就是将相似的东西分到一组 聚类问题的难点:如何评估,如何调…
1 基础知识 相似度或距离 假设有 $m$ 个样本,每个样本由 $n$ 个属性的特征向量组成,样本合集 可以用矩阵 $X$ 表示 $X=[x_{ij}]_{mn}=\begin{bmatrix}x_{11}&x_{12} &  ... &x_{1n} \\x_{21}&x_{22} &  ... &x_{2n} \\...& ... &  ...& ...\\x_{m1}&x_{m2} & ...&x_{mn}…
聚类和分类是机器学习中两个常用的算法,聚类将数据分开为不同的集合,分类对新数据进行类别预测,下面将就两类算法进行介绍. 1. 聚类和分类(1)什么是聚类 聚类( Clustering)指将数据对象分组成为多个类或者簇( Cluster),它的目标是:在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大.其实,聚类在人们日常生活中是一种常见行为,即所谓的“物以类聚,人以群分”,其核心思想在于分组,人们不断地改进聚类模式来学习如何区分各个事物和人.(2)什么是分类 数据仓库.数据库或者其…
https://zhuanlan.zhihu.com/p/28871960 深度学习模型中的卷积神经网络(Convolution Neural Network, CNN)近年来在图像领域取得了惊人的成绩,CNN直接利用图像像素信息作为输入,最大程度上保留了输入图像的所有信息,通过卷积操作进行特征的提取和高层抽象,模型输出直接是图像识别的结果.这种基于”输入-输出”直接端到端的学习方法取得了非常好的效果,得到了广泛的应用. 卷积层(convolution layer): 执行卷积操作提取底层到高层…
  一.概念 1.1.定义 按照某一个特定的标准(比如距离),把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不再同一个簇内的数据对象的差异性也尽可能的大. 聚类属于典型的无监督学习(Unsupervised Learning) 方法.与监督学习(如分类器)相比,无监督学习的训练集没有人为标注的结果.在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构. 1.2.主要方法 层次聚类(Hierarchical Clustering):合并法.分…
模型保存和加载 sklearn模型的保存和加载API from sklearn.externals import joblib 保存:joblib.dump(rf, 'test.pkl') 加载:estimator = joblib.load('test.pkl') 线性回归的模型保存加载案例 def linear3(): """ 岭回归的优化方法对波士顿房价预测 """ #获取数据 boston=load_boston() #划分数据集 x_t…
K-means 原理 首先随机选择k个初始点作为质心 1. 对每一个样本点,计算得到距离其最近的质心,将其类别标记为该质心对应的类别 2. 使用归类好的样本点,重新计算K个类别的质心 3. 重复上述过程,直到质心不发生变化 距离计算方法 在K-Means算法中,需要注意的是,对于距离的计算有很多中方法: (1)闵可夫斯基距离( Minkowski ) \[d(x,y) = (\sum_{i=1}^n|x_i-y_i|^p)^{\frac{1}{p}} \] 注意这里p=2时则为常用的欧氏距离.…
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 假设要把样本集分为k个类别,算法描述如下: (1)适当选择k个类的初始中心,最初一般为随机选取: (2)在每次迭代中,对任意一个样本,分别求其到k个中心的欧式距离,将该样本归到距离最短的中心所在的类: (3)利用…
kmeans一般在数据分析前期使用,选取适当的k,将数据聚类后,然后研究不同聚类下数据的特点. 算法原理: (1) 随机选取k个中心点: (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类: (3) 更新中心点为每类的均值: (4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步数,误差不变. 空间复杂度o(N) 时间复杂度o(I*K*N) 其中N为样本点个数,K为中心点个数,I为迭代次数 为什么迭代后误差逐渐减小: SSE=  对于 而言,求导…
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了其比较容易实现并行化. 学习mahout就先从简单的kmeans算法开始学起,就当抛砖引玉了. 1. 首先来简单的回顾一下KMeans算法: (1)   根据事先给定的k值建立初始划分,得到k个Cluster,比如,可以随机选择k个点作为k个Cluster的重心,又或者用其他算法得到的Cluster…
“物以类聚,人以群分”, 所谓聚类就是将相似的元素分到一"类"(有时也被称为"簇"或"集合"), 簇内元素相似程度高, 簇间元素相似程度低. 常用的聚类方法有划分聚类, 层次聚类, 密度聚类, 网格聚类, 模型聚类等. 我们这里重点介绍划分聚类. 1. 划分聚类 划分聚类, 就是给定一个样本量为N的数据集, 将其划分为K个簇(K<N), 每一个簇中至少包含一个样本点. 大部分的划分方法是基于距离的, 即簇内距离最小化, 簇间距离最大化. 常…