from __future__ import print_function import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, Ma…
from __future__ import print_function # 导入numpy库, numpy是一个常用的科学计算库,优化矩阵的运算 import numpy as np np.random.seed(1337) # 导入mnist数据库, mnist是常用的手写数字库 from keras.datasets import mnist # 导入顺序模型 from keras.models import Sequential # 导入全连接层Dense, 激活层Activation…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新. 手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]…
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from PIL import Image lr = 0.01 momentum = 0.5 epochs = 10 def get_int(b): return int(codecs.encode(b, 'hex'), 16) def read_label_file(path): with open(pa…
pytorch做手写数字识别 效果如下: 工程目录如下 第一步  数据获取 下载MNIST库,这个库在网上,执行下面代码自动下载到当前data文件夹下 from torchvision.datasets import MNIST import torchvision mnist = MNIST(root='./data',train=True,download=True) print(mnist) print(mnist[0]) print(len(mnist)) img = mnist[0][…
simple版本nn模型 训练手写数字处理 MNIST_data数据   百度网盘链接:https://pan.baidu.com/s/19lhmrts-vz0-w5wv2A97gg 提取码:cgnx import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist=input_data.read_data_sets("MNIST_data", one_hot=…
线性回归 步骤 构造线性回归数据 定义输入层 设计神经网络中间层 定义神经网络输出层 计算二次代价函数,构建梯度下降 进行训练,获取预测值 画图展示 代码 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt tf.compat.v1.disable_eager_execution() #3-1非线性回归 #使用numpy生成200个随机点,200行1列 x_data=np.linspace(-0.5…