题目来源:POJ 1284 Primitive Roots 题意:求奇素数的原根数 思路:一个数n是奇素数才有原根 原根数是n-1的欧拉函数 #include <cstdio> const int maxn = 70000; int phi[maxn]; void phi_table(int n) { for(int i = 2; i <= n; i++) phi[i] = 0; phi[1] = 1; for(int i = 2; i <= n; i++) if(!phi[i])…
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int maxn = 1000015; bool u[maxn]; ll su[maxn]; ll num; ll…
A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2478 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 &l…
从来没有接触过完全剩余系,不会证明,知道看了别人的题解才知道要用欧拉函数: 下面是证明过程: p是奇素数,如果{xi%p | 1 <= i <= p - 1} = {1,2,...,p-1},则称x是p的原根. 给出一个p,问它的原根有多少个. {xi%p | 1 <= i <= p - 1} = {1,2,...,p-1} 等价于 {xi%(p-1) | 1 <= i <= p - 1} = {0,1,2,...,p-2},即为(p-1)的完全剩余系 若x,x2...…
传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2416 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms.…
http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2*f[i]-1. #include <stdio.h> #include <iostream> #include <map> #include <set> #include <stack> #include <vector> #inclu…
Relatives AC代码 Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16186   Accepted: 8208 Description Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relativel…
题意: 求sigma phi(n) 思路: 线性递推欧拉函数 (维护前缀和) //By SiriusRen #include <cstdio> using namespace std; #define maxn 1000005 #define int long long int n,p[maxn+100],s[maxn+100],phi[maxn+100],tot; void Phi(){ for(int i=2;i<=maxn;i++){ if(!s[i])p[++tot]=i,phi…
http://poj.org/problem?id=1284 fr=aladdin">原根 题意:对于奇素数p,假设存在一个x(1<x<p),(x^i)%p两两不同(0<i<p),且解集等于{1,2....,p-1}. 称x是p的一个原根. 输入p问p的原根有多少个. 直接枚举的,TLE了. 看到discuss里面说是求原根.答案直接是phi[p-1].百度百科上直接就给出答案了.m有原根的充要条件是m= 1,2,4,p,2p,p^n,当中p是奇素数,n是随意正整数…
http://poj.org/problem?id=1284 题意:给定一个奇素数p,求p的原根个数. 原根: { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 },则x是p的原根. 题解:结论:奇素数p的原根个数为phi(p-1). 证明: 对于给出的素数p, 首先要明确一点:p的元根必然是存在的(这一点已由Euler证明,此处不再赘述),因此,不妨设其中的一个元根是a0(1<=a0<=p-1) 按照题目的定义,a0…