[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法]AC自动机+DP+矩阵快速幂 [题解]其实题意的数据范围不太清晰,反正开200个点就足够了. 因为要匹配禁忌串,所以对禁忌串集合建立AC自动机,标记禁忌串结尾节点,以及下传到所有能fail到的点(这些点访问到都相当于匹配了禁忌串). 令f[i][j]表示匹配到节点i,长度为j的串的数量,先预处理a[i][j…
Luogu-3250 [BJOI2017]魔法咒语(AC自动机,矩阵快速幂) 题目链接 题解: 多串匹配问题,很容易想到是AC自动机 先构建忌讳词语的AC自动机,构建时顺便记录一下这个点以及它的所有后缀有没有忌讳词语,即对于每个AC自动机上的结点\(x\),\(p[x].p|=p[p[x].f].p\) 然后前半部分分和后半是两道完全不同的题目(滑稽 前60分: 这些部分分的特征是\(L\le 100\) 直接AC自动机上\(dp\)就好了,枚举匹配长度\(i\),当前匹配到的点\(x\),以及…
[题意]给定n个禁忌字符串和字符集大小alphabet,保证所有字符在集合内.一个字符串的禁忌伤害定义为分割能匹配到最多的禁忌字符串数量(一个可以匹配多次),求由字符集构成的长度为Len的字符串的期望禁忌伤害.n<=5,1<=alphabet<=26,len<=10^9. [算法]AC自动机+期望+矩阵快速幂 [题解]参考:BZOJ2553: [BeiJing2011]禁忌 首先对于一个确定的字符串,每个匹配的禁忌字符串视为一条线段,就是经典的不重叠最大线段数问题. 通用的贪心做法…
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i位走到AC自动机上j节点的概率,枚举下个字符即可转移.同时记录此时期望伤害,找到合法串就统计入答案. 并且注意到每次转移是相同的.矩阵快速幂优化即可. 以及非常卡精度,需要全程long double.cout的保留小数位数误差是相当大的,必须用printf.并且转移到某个字符的概率即1/alphab…
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include <stdlib.h> #include <string.h> #include <algorithm> #define MAXN 140 #define MOD 30031 using namespace std; struct Matrix { int num[MAXN]…
题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设S="ABCD",T有子串"A","AB","CD","BCD",那么步数最小方案是选"AB"再接上"CD",而不是提前断开选择"A"+"B…
注意到周期234的lcm只有12,也就是以12为周期,可以走的状态是一样的 所以先预处理出这12个状态的转移矩阵,乘起来,然后矩阵快速幂优化转移k/12次,然后剩下的次数暴力转移即可 #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int mod=10000; int n,m,s,t,k,x,y,nf,T,w[60]; struct jz { int a[6…
矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!! 其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式,然后按每一位分别矩阵快速幂即可 矩阵: f[i-1] w[i] 1 1 f[i] i-1 0 1 1 = i 1 0 0 1 1 #include<iostream> #include<cstdio> using namespace std; long long n,mod,t; lo…
题意:给一些字符串的集合S和整数n,求满足 长度为n 只含charset = {'A'.'T‘.'G'.'C'}包含的字符 不包含S中任一字符串 的字符串的种类数. 思路:首先对S建立ac自动机,考虑向ac自动机中的每种状态后加charset中的字符,如果终态不为“接受状态”,也就是不与S中的任一字符串匹配,则将这次转移记为有效,方法数加1.这样可以建立状态之间的转移矩阵D,表示由一个状态接受1个字符后的方案数,D自乘n次,就得到了任一状态接受n个字符形成的不同字符串种类数,其中从“0”到“i”…
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;   #define b(x) (1 &l…