bzoj 2820 / SPOJ PGCD 莫比乌斯反演】的更多相关文章

那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j=1}^{m}[(i,j)=p]&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[i⊥j]\newline&=&\sum_{p=…
传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). #pragma comment(linker,"/STACK:1024000000,1024000000") #include <cstdio> #include <cstring> #include <string> #include <cmat…
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含1).求第k个非完全平方数. 思路:我们先求出[1, n]的非完全平方数的个数,然后利用二分来查找正好等于k时的n(注意这样的n可能不止一个,求最左边的).关键是,怎么求出前者,我们可以利用容斥原理,用n - [1, n]内完全平方数的个数,求[1, n]内完全平方数的个数,用容斥发现前面的系数就是…
3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status][Discuss] Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. Input 输入包含多组数据.    输入的第一行一个整数Q表示测试点内的数…
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\sum_{d\leq min(n/g,m/g)}\mu (d)*d^2*sum(n/gd,m/gd)$ 令T=gd $ans=\sum_{T\leq min(n,m)}sum(n/T,m/T)*T\sum_{d|T}\mu (d)*d$ 后面部分由积性函数的乘积和约数和也是积性函数可以线性筛得出. 当i%p…
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po姐的题解(Orzzz)才搞懂这道题,搞清楚了莫比乌斯反演的两种经典的卷积形式的不同之处 令$\sigma(i)$表示i的约数和 如果去掉A这个限制,则题目是让我们求$\sum_{i=1}^{n}\sum_{j=1}^{m}\sigma(gcd(i,j))$ 考虑如何正确转化式子,让我们能够把不大于A…
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HINT 100%的数据满足:1≤n≤50000,1≤a≤b≤50…
3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status][Discuss] Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. Input 输入包含多组数据.    输入的第一行一个整数Q表示测试点内的数据…
这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\leq m)\)的对数.则\(ans = F(b,d,k)-F(a-1,d,k)-F(c-1,b,k)+F(a-1,c-1,k)\) 预处理莫比乌斯函数的前缀和,分块加速求和即可 #include<bits/stdc++.h> using namespace std; typedef long lon…
题面 bzoj 洛谷 题解 看这个题先大力猜一波结论 #include <cstdio> #include <cstring> #include <algorithm> using std::min; using std::max; using std::swap; using std::sort; using std::__gcd; typedef long long ll; template<typename T> void read(T &x)…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题目大意] 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. [题解] 反演简单题. [代码] #include <cstdio> #include <algorithm> using namespace std; typedef long long LL; const int N=10000010; namespa…
$ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d)$表示所有(i,j)=d的二元组的数量. 那么可以反演得到$g(i)=\sum_{i \mid d}\mu(\lfloor d/i \rfloor )*\lfloor n/d \rfloor * \lfloor m/d \rfloor$ 然后代入然后xjb变换可得 $ans=\sum_{d<=n}\l…
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:给a,b,c,d,k,求gcd(x,y)==k的个数(a<=x<=b,c<=y<=d) 思路:假设F(a,b)代表gcd(x,y)==k 的个数(1<=x<=a,1<=y<=b) 那么这是满足区间加减的 ans=F(b,d)-F(b,c)-F(a,d)+F(a,c) 剩下的就和Zap一样了 #include<algorithm> #in…
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得到: answer = Σ μ(t)*⌊a'/t⌋*⌊b'/t⌋ ⌊a'/t⌋相等的是一段连续的区间, ⌊b'/t⌋同理, 而且数量是根号级别的 所以搞出μ的前缀和然后分块处理. ----------------------------------------------------------------…
传送门:Visible Lattice Points 题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1. 设f(d) = GCD(a,b,c) = d的种类数 : F(n) 为GCD(a,b,c) = d 的倍数的种类数, n%a == 0 n%b==0 n%c==0. 即 :F(d) = (N/d)*(N/d)*(N/d); 则f(d) = sigma( mu[n/d]*F(n), d|n ) 由于d = 1 所以f(1) = sigma( mu[n]*F(n) )…
我们要求的是∑ni=1∑mj=1(2×gcd(i,j)−1) 化简得2×∑ni=1∑mj=1gcd(i,j)−n×m 所以我们现在只需要求出∑ni=1∑mj=1gcd(i,j)即可 ∑ni=1∑mj=1gcd(i,j) =∑ni=1∑mj=1∑d|gcd(i,j)ϕ(d) =∑min(n,m)d=1ϕ(d)×⌊nd⌋×⌊md⌋ 预处理ϕ的前缀和,下底分组即可 #include<cstdio> #include<iostream> #include<cstring> #i…
题目描述 给出n,m,l,r,modn,m,l,r,modn,m,l,r,mod 表示一个(n+1)∗(m+1)(n+1)*(m+1)(n+1)∗(m+1)的格点图,求能够互相看见的点对个数对modmodmod取模的值. 能互相看见定义为此两点连线上没有其他的格点且欧氏距离在[l,r]范围内 n,m<=100000l,r<=150000mod<=109n,m<=100000\newline l,r<=150000\newline mod<=10^9n,m<=100…
Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies on the segment joining X and Y. Inpu…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题解: 莫比乌斯反演 先看看这个题:HDU 1695 GCD(本题简化版) HDU 1695 GCD:求满足x∈(1~n)和y∈(1~m),且gcd(x,y)=k的(x,y)的对数. 而这个k是给定的. 可以由莫比乌斯反演得到:(详见●HDU 1695 GCD) $ANS=\sum_{d=1}^{n}\mu(d)\times\lfloor\frac{n}{d}\rfloor\time…
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of some operation -- a function of two arguments. But instead of a boring multiplication table of the sort you learn by heart at prep-school, he has cre…
莫比乌斯反演真(TMD)难学.我自看了好长时间. BZOJ 2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 718 Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,…
首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HI…
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对.q组询问 分析 我们要求的是 \[\sum_{p \in P} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=p]\](大写P表示质数集合) 根据\(kgcd(i,j)=gcd(ki,kj)\), \[原式=\sum_{p \in P} \sum_{i=1}^{\lfloo…
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便表述,由于n和m等价,以下内容均默认n<=m 题目让我们求:$\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 容易变形为:$\sum_{k=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{k} \righ…
SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible…
题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为gcd(a, b, c) = x的对数,那么这题就是要求g(1).我们令f(x)为x | gcd(a, b, c)的对数,显然f(n) = sigma(n | d, g(d)) .f(d) = (n/d) * (n/d) * (n/d),那么我们就可以用莫比乌斯反演公式了, g(n) = sigma(n |…
http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x,y,z)==1的个数+{(x,y,0)|gcd(x,y)==1}的个数+3{(0,0,1),(0,1,0),(1,0,0)} 现在不去管最后的三个坐标轴上的点, 设f(i)=|{(x,y,0)|gcd(x,y)==i}|*3+|{(x,y,z)|gcd(x,y,z)==i}|,也就是不在坐标轴上且…
[BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n. Input The first line contains T the number of test cases. Each of the n…
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies on the segmen…
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/problemnew/show/P1447 首先,题意就是求 ∑(1 <= i <= n) ∑(1 <= j <= m) [ 2 * gcd(i,j) -1 ]: 方法1:容斥原理 枚举每个数作为 gcd 被算了几次: 对于 d ,算的次数 f[d] 就是 n/d 和 m/d 中互质的…