用Tensorflow实现多层神经网络】的更多相关文章

用Tensorflow实现多层神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 源代码请点击下方链接欢迎加星 ReLU激活函数/L1范数版本 Sigmoid激活函数/交叉熵函数版本 数据集及网络结构 数据集 使用预测出生体重的数据集csv格式,其中数据的第2列至第8列为训练属性,第9列为体重数据即标签,第一列为标记是否为低出生体重的标记,本博文中不对其进行讨论. Low Birthrate data: Columns(列) Vari…
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便.关于MNIST的基本信息可以参考我的上一篇随笔. mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 2.模型基本结构 本次采用的训练模型为三层神经网络结构,输入层节点数与MNIST一行数据的长度一…
包括卷积神经网络(CNN)在内的各种前馈神经网络模型, 其一次前馈过程的输出只与当前输入有关与历史输入无关. 递归神经网络(Recurrent Neural Network, RNN)充分挖掘了序列数据中的信息, 在时间序列和自然语言处理方面有着重要的应用. 递归神经网络可以展开为普通的前馈神经网络: 长短期记忆模型(Long-Short Term Memory)是RNN的常用实现. 与一般神经网络的神经元相比, LSTM神经元多了一个遗忘门. LSTM神经元的输出除了与当前输入有关外, 还与自…
引言 从本周,我将开始tensorflow的学习.手头只有一本<tensorflow:实战Google深度学习框架>,这本书对于tensorflow的入门有一定帮助.tensorflow中文社区中的翻译的谷歌官方教程十分详细,是自学tensorflow的好帮手,当然如果是英文熟手可以直接看谷歌官方给出的原版教程(博主英语是靠谷歌翻译和百度翻译救活的). 本篇博客主要讲述机器学习的发展过程,以及BP神经网络的主要内容.不涉及tensorflow的编程.具体BP神经网络tensorflow的实现将…
TensorFlow实现多层感知机函数逼近 准备工作 对于函数逼近,这里的损失函数是 MSE.输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid. 下面是如何使用 MLP 进行函数逼近的示例: 导入需要用到的模块:sklearn,该模块可以用来获取数据集,预处理数据,并将其分成训练集和测试集:pandas,可以用来分析数据集:matplotlib 和 seaborn 可以用来可视化: 加载数据集并创建 Pandas 数据帧来分析数据: 了解一些关于数据的细节: 下表很好地描述了数据…
首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络. 1.神经单元的选择 那么我们应该使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题: 1)感知器训练法则中的输出 由于sign函数时非连续函数,这使得它不可微,因而不能使用上面的梯度下降算法来最…
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNIST手写数字库对CNN(卷积神经网络)进行训练,准确度达到98%以上时,再准备独家手写数字10个.画图软件编辑的数字10个共计20个,让训练好的CNN进行识别,考察其识别准确度. 调试代码: 坑1:ModuleNotFoundError: No module named 'google' 解决:pi…
本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测.作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的. 所以呢,这里是基于历史观察数据进行实数序列的预测.传统的神经网络模型并不能解决这种问题,进而开发出递归神经网络模型,递归神经网络模型可以存储历史数据来预测未来的事情. 在这个例子里将预测几个函数: 正弦函数:sin 同时存在正弦函数和余弦函数:sin和cos x*sin(x) 首先,建立LSTM模型,lstm_model,这个…
Spark2.0 MLPC(多层神经网络分类器)算法概述 MultilayerPerceptronClassifier(MLPC)这是一个基于前馈神经网络的分类器,它是一种在输入层与输出层之间含有一层或多层隐含结点的具有正向传播机制的神经网络模型.  中间的节点使用sigmoid (logistic)函数,输出层的节点使用softmax函数.输出层的节点的数目表示分类器有几类.MLPC学习过程中使用BP算法,优化问题抽象成logistic loss function并使用L-BFGS进行优化.…
ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程) ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其它机器学习的算法,能够直接来学dl. 于是近期就開始搞这个了.教程加上matlab编程.就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习地址:http://ufldl.stanfor…