在Redis 缓存击穿(失效).缓存穿透.缓存雪崩怎么解决?中我们说到可以使用布隆过滤器避免「缓存穿透」. 码哥,布隆过滤器还能在哪些场景使用呀? 比如我们使用「码哥跳动」开发的「明日头条」APP 看新闻,如何做到每次推荐给该用户的内容不会重复,过滤已经看过的内容呢? 你会说我们只要记录了每个用户看过的历史记录,每次推荐的时候去查询数据库过滤存在的数据实现去重. 实际上,如果历史记录存储在关系数据库里,去重就需要频繁地对数据库进行 exists 查询,当系统并发量很高时,数据库是很难扛住压力的.…
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难.hash原理Hash (哈希,或者散列)函数在计算机领域,尤其是数据快速查找领域,加密领域用的极广.其作用是将一个大的数据集映射到一个小…
什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, gmail等邮箱垃圾邮件过滤功能 这几个例子有一个共同的特点: 如何判断一个元素是否存在一个集合中? 常规思路 数组 链表 树.平衡二叉树.Trie Map (红黑树) 哈希表 虽然上面描述的这几种数据结构配合常见的排序.二分搜索可以快速高效的处理绝大部分判断元素是否存在集合中的需求.但是当集合里…
今天打算使用redis 的bitset搞一个 bloom filter, 这样的好处是可以节省内存,坏处是可能在会有一些数据因为提示重复而无法保存. bloom filter 的大体原理就是通过不同的hash函数将一个字符串映射到几个不同的位,并将这几个不同的位设置为1. 如果在查找某个字符串的时候,发现通过hash映射后的位有的不为1,说明该字符串不存在. 如果发现所有的位都为1,那该字符串有一定的概率不存在,通常这个概率会很小. 相关内容可以查看: http://olylakers.itey…
Filter过滤器API      Servlet过滤器API包含了3个接口,它们都在javax.servlet包中,分别是Filter接口.FilterChain接口和FilterConfig接口. Filter接口(源码) public interface Filter { public void init(FilterConfig filterConfig) throws ServletException; public void doFilter(ServletRequest reque…
本篇博客会简单的介绍Redis的Sentinel相关的原理,同时也会在最后的文章给出硬核的实战教程,让你在了解原理之后,能够实际上手的体验整个过程. 之前的文章聊到了Redis的主从复制,聊到了其相关的原理和缺点,具体的建议可以看看我之前写的文章Redis的主从复制. 总的来说,为了满足Redis在真正复杂的生产环境的高可用,仅仅是用主从复制是明显不够的.例如,当master节点宕机了之后,进行主从切换的时候,我们需要人工的去做failover. 同时在流量方面,主从架构只能通过增加slave节…
1. 什么是MVCC MVCC全称是Multi-Version Concurrency Control(多版本并发控制),是一种并发控制的方法,通过维护一个数据的多个版本,减少读写操作的冲突. 如果没有MVCC,想要实现同一条数据的并发读写,还要保证数据的安全性,就需要操作数据的时候加读锁和写锁,这样就降低了数据库的并发性能. 有了MVCC,就相当于把同一份数据生成了多个版本,在操作的开始各生成一个快照,读写操作互不影响.无需加锁,也实现数据的安全性和事务的隔离性. 事务的四大特性中隔离性就是基…
一.过滤器使用场景:比如有如下几个需求:1.原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中? 解决办法一:将10亿个号码存入数据库中,进行数据库查询,准确性有了,但是速度会比较慢. 解决办法二:将10亿号码放入内存中,比如Redis缓存中,这里我们算一下占用内存大小:10亿*8字节=8GB,通过内存查询,准确性和速度都有了,但是大约8gb的内存空间,挺浪费内存空间的.2.接触过爬虫的,应该有这么一个需求,需要爬虫的网站千千万万,对于一个新的网站ur…
Bloom Filter算法详解 什么是布隆过滤器 布隆过滤器(Bloom Filter)是 1970 年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数 (下面详细说),实际上你也可以把它简单理解为一个不怎么精确的set结构,当你使用它的contains方法判断某个对象是否存在时,它可能会误判.但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率. 当布隆过滤器说某个值存在时,这个值可能不存在:但是当它说不存在时,那么这个值…
Cache 缓存 1. 记忆 2. 空间有限 3. 钱包 - 储物柜 4. 类似背代码模板,O(n) 变 O(1)     LRU Cache 缓存替换算法 1. Least Recently Used(最近最少使⽤的淘汰掉) 2. Hash Table + Double LinkedList(哈希表 + 双向链表) 3. O(1) 查询 (cache只要查询第一个) 4. O(1) 修改.更新(同3:要是处理最中间的话就是O(n)了)   双向链表实现: LFU Cache 也记录元素出现的频…