论文信息 论文标题:Representation Learning on Graphs with Jumping Knowledge Networks论文作者:Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka论文来源:2018,ICML论文地址:download论文代码:download 1 Introduction 最近,图表示学习提出了基于 "邻域聚…
Paper Information 论文标题:Contrastive Multi-View Representation Learning on Graphs论文作者:Kaveh Hassani .Amir Hosein Khasahmadi论文来源:2020, ICML论文地址:download论文代码:download Abstract 介绍了一种自监督的方法,通过对比图的结构视图来学习节点和图级别的表示.与视觉表示学习不同,对于图上的对比学习,将视图的数量增加到两个以上或对比多尺度编码并不…
论文信息 论文标题:Bootstrapped Representation Learning on Graphs论文作者:Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković, Michal Valko论文来源:2021, ArXiv论文地址:download 论文代码:download 1 介绍 研究目的:对比学习中不适用负样本. 本文贡献: 对图比学习不使用负样本 2…
12 Inductive Representation Learning on Temporal Graphs link:https://arxiv.org/abs/2002.07962 本文提出了时间图注意(TGAT)层,以有效地聚合时间-拓扑邻域特征,并学习时间-特征之间的相互作用.对于TGAT,本文采用自注意机制作为构建模块,并基于调和分析中的经典Bochner定理(又是没见过的定理QAQ)发展了一种新的函数时间编码技术. Conclusion 本文提出了一种新颖的时间感知图注意网络,用于…
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2016  摘要:近年来 CNN 在监督学习领域的巨大成功 和 无监督学习领域的无人问津形成了鲜明的对比,本文旨在链接上这两者之间的缺口.提出了一种 deep convolutional generative adversarial networks (DCGANs),that have certai…
翻译: How to do Deep Learning on Graphs with Graph Convolutional Networks 什么是图卷积网络 图卷积网络是一个在图上进行操作的神经网络.给定一个图\(G=(E,V)\) ,一个GCN的输入包括: 一个输入特征矩阵X,其维度是\(N\times F^0\) ,其中N是节点的数目,\(F^0\)是每个节点输入特征的数目 一个\(N \times N\)的对于图结构的表示的矩阵,例如G的邻接矩阵A GCN的一个隐藏层可以写成\(H^i…
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD论文地址:download 论文代码:download 1 Introduction 问题引入: 图卷积是领域聚合的代表,这些邻域聚合方法中的一层只考虑近邻,当进一步深入以实现更大的接受域时,性能会下降,这种性能恶化归因于过平滑问题( over-smoothing),即当感受域增大时,在传播和更新过…
Paper Information Title:Geom-GCN: Geometric Graph Convolutional NetworksAuthors:Hongbin Pei, Bingzhen Wei, K. Chang, Yu Lei, Bo YangSources:2020, ICLRPaper:Download Code:Download Abstract Message-passing neural networks (MPNNs) 存在的问题:MPNNs 的 aggregat…
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留的图卷积神经网络架构(LPD-GCN)>,原文作者:PG13 . 近些年,很多研究者开发了许多基于图卷积网络的方法用于图级表示学习和分类应用.但是,当前的图卷积网络方法无法有效地保留图的局部信息,这对于图分类任务尤其严重,因为图分类目标是根据其学习的图级表示来区分不同的图结构.为了解决该问题,这篇文章提…
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. Kefato, Sarunas Girdzijauskas论文来源:2021, WWW论文地址:download 论文代码:download 1 介绍 本文核心贡献: 使用孪生网络隐式实现对比学习: 本文提出四种特征增强方式(FA): 2 相关工作 Graph Neural Networks GCN…