题面 给一个 N N N 点 M M M 边的简单无向图,询问 Q Q Q 次,每次问你把编号在 [ l i , r i ] [l_i,r_i] [li​,ri​] 之间的边删掉后,该图是否存在奇数环,即是否不能被二染色. 1 ≤ N , M , Q ≤ 200000 1\leq N,M,Q\leq 200000 1≤N,M,Q≤200000. 题解 看了半天才搞懂官解里的奇怪分治是什么,其实就是整体二分嘛! 部分分就不多赘述了,大概就是一步步引导我们到正解的整体二分+可回退并查集(官解称其为:…
整体二分和CDQ分治 有一些问题很多时间都坑在斜率和凸壳上了么--感觉斜率和凸壳各种搞不懂-- 整体二分 整体二分的资料好像不是很多,我在网上找到了一篇不错的资料:       整体二分是个很神的东西,它可以把许多复杂的数据结构题化简.它的精髓在于巧妙地利用了离线的特点,把所有的修改.询问操作整体把握.       先说说第k大数吧,这种问题是整体二分的标志性题目,什么划分树啊,主席树啊,树套树啊见了整体二分都得自叹不如.首先对于一次询问来说我们可以二分答案,然后通过验证比答案大的数有多少个来不…
作为一个永不咕咕咕的博主,我来更笔记辣qaq CDQ分治 CDQ分治的思想还是比较简单的.它的基本流程是: \(1.\)将所有修改操作和查询操作按照时间顺序并在一起,形成一段序列.显然,会影响查询操作结果的修改操作在序列中一定会在这一个查询操作前面 \(2.\)将这一段序列分为左右两半,递归解决左右两半的子问题 \(3.\)考虑左半部分的修改操作对右半部分的查询操作的贡献 CDQ分治的基本思想就是在分治的过程中统计左半部分对右半部分的影响 上面的过程可能比较抽象,举个栗子:归并排序求逆序对 别告…
这点东西前前后后拖了好几个星期才学会……还是自己太菜啊. Cdq分治的思想是:把问题序列分割成左右两个,先单独处理左边,再处理左边对右边的影响,再单独处理右边.这样可以消去数据结构上的一个log,降低编码复杂度. 整体二分:当一个询问的答案满足二分性质时,我们可以按照答案的大小分割整个查询和修改序列.每次把序列分成互不相同的两部分.这样能把数据结构的二分拿出来,降低编码复杂度. 说白了,就是当你懒得写树套树或者惨遭卡内存时候的骗分办法. 好了,上例题吧: BZOJ2683: 二维单点加,矩形查.…
突然诈尸.png 这两个东西好像都是离线骗分大法... 不过其实这两个东西并不是一样的... 虽然代码长得比较像 CDQ分治 基本思想 其实CDQ分治的基本思想挺简单的... 大概思路就是长这样的: 程序得到一个有序的操作/查询序列$[l,r)$ (于是就不能在线了QAQ) 将这些操作分成两部分$[l,mid)$和$[mid,r)$递归下去处理. 显然直接分下去一定还是有序的于是我们不用管它 计算$[l,mid)$中的操作对$[mid,r)$的查询的贡献. 也就是用左半部分的子问题辅助解决右半部…
参考:https://www.luogu.org/blog/Owencodeisking/post-xue-xi-bi-ji-cdq-fen-zhi-hu-zheng-ti-er-fen 前置技能:树状数组,线段树,分治.归并排序 CDQ分治: 据说是OI大佬陈丹琦发明的 1.三维偏序 思路: 第一维排序,第二维分治,第三维树状数组上查询 考虑分治时区间 [l, m] 对区间 [m+1, r] 的贡献,因为第一维已经排好序,所以区间 [l, m] 的第一维小于区间 [m+1, r]的第一维 然后…
目录 小结 CDQ分治 二维LIS 第一道裸题 bzoj1176 Mokia bzoj3262 陌上花开 bzoj 1790 矩形藏宝地 hdu5126四维偏序 P3157 [CQOI2011]动态逆序对 CF 762E CSUSTOJ 1024:CDQ CSUSTOJ 1026:强制在线树套树 整体二分 动态区间第k小 P3332 [ZJOI2013]K大数查询 初学推荐博客:LemonMZc BraketBN Owen_codeisking CDQ&整体二分教程和题目:Winniechen…
LINK:I 君的探险 神仙题! 考虑一个暴力的做法 每次点亮一个点 询问全部点 这样询问次数为 \(\frac{n\cdot (n-1)}{2}\) 可以通过前5个点. 考虑都为A的部分分 发现一个点只会和另外一个点进行连边. 且询问次数要求\(nlogn\) 需要分治 二分等方法. 一个想法是 每次点亮一个再询问全部太浪费了 可以进行分治. 即每次点亮\(\frac{1}{4}\)数量的点 然后观察 如果两个点是一组的那么他们的状态相同 按照状态来划分区域再进行分治下去. 每次可以rand选…
洛谷 Codeforces 分治的题目,或者说分治的思想,是非常灵活多变的. 所以对我这种智商低的选手特别不友好 脑子不好使怎么办?多做题吧-- 前置知识 线性基是你必须会的,不然这题不可做. 推荐再去看看洛谷P4151. 思路 看到异或最短路,显然线性基. 做题多一些的同学想必已经想到了"洛谷P4151 [WC2011]最大XOR和路径"了. 先考虑没有加边删边的做法: 做出原图的任意一棵生成树: 把每个非树边和树边形成的环丢进线性基里: 询问时把两点在树上的路径异或和丢进线性基里求…
闲话 stO猫锟学长,满脑子神仙DS 网上有不少Dalao把线段树分治也归入CDQ分治? 还是听听YCB巨佬的介绍: 狭义:只计算左边对右边的贡献. 广义:只计算外部对内部的贡献. 看来可以理解为广义下的. 不过叫它线段树分治挺形象的啊! 线段树分治思想 我们在做CDQ的时候,将询问和操作通通视为元素,在归并过程中统计左边的操作对右边的询问的贡献. 而在线段树分治中,询问被固定了.按时间轴确定好询问的序列以后,我们还需要所有的操作都会影响一个时间区间.而这个区间,毫无疑问正好对应着询问的一段区间…