下一波大趋势和大红利从互联网+让位于人工智能+,已成业界共识.在AI的数据.算法和芯片之三剑客中,考虑到AI算法开源的发展趋势,数据与芯片将占据越来越重要的地位,而作为AI发展支柱的芯片更是AI业的竞争“核心”.在围绕AI芯片一系列跑马圈地的“运动”中,已不是“单点作战”的竞争,而是涉及路线.架构.应用.生态等全方位的维度. 路线之争 可以说,芯片将决定新AI计算时代的基础架构和未来生态.因此,谷歌.微软.IBM.Facebook等美国巨头都投巨资加速AI芯片的研发,旨在抢占制高点,而国内AI芯…
[导读]神经网络的初始化是训练流程的重要基础环节,会对模型的性能.收敛性.收敛速度等产生重要的影响.本文是deeplearning.ai的一篇技术博客,文章指出,对初始化值的大小选取不当,  可能造成梯度爆炸或梯度消失等问题,并提出了针对性的解决方法. 初始化会对深度神经网络模型的训练时间和收敛性产生重大影响.简单的初始化方法可以加速训练,但使用这些方法需要注意小心常见的陷阱.本文将解释如何有效地对神经网络参数进行初始化. 有效的初始化对构建模型至关重要 要构建机器学习算法,通常要定义一个体系结…
深度学习(Deep Learning)是机器学习的一种,而机器学习是实现人工智能的必经途径. 目前大部分表现优异的AI应用都使用了深度学习技术,引领了第三次人工智能的浪潮. 一. 深度学习的概念 深度学习是机器学习中一种基于对数据进行表征学习的方法. 其属于机器学习的范畴,可以说是在传统神经网络基础上的升级,约等于神经网络.它的好处是用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征. 深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它…
一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现 导读:近日,马云.马化腾.李彦宏等互联网大佬纷纷亮相2018世界人工智能大会,并登台演讲.关于人工智能的现状与未来,他们提出了各自的观点,也引发网友热议.有人认为大佬们的分享干货满满,也有人有不同观点,认为我们并没有真正搞懂人工智能,更无法预测未来. 如果回溯历史,你会发现,人工智能一直是国内外计算机.互联网大佬们喜欢的话题.他们的观点和预言,有些已成为今天的生活常态,有些却依然没有实现.本文就带你回顾人工智能发展过程中重要的历史阶段,以…
基于英特尔架构实现软硬协同加速,显著提升新冠肺炎.乳腺癌等疾病的检测和筛查效率,并帮助医疗科研平台预防"维度灾难"问题 <PAGE 1 LEFT COLUMN: CUSTOMER LOGO> <PAGE 1 BODY COPY: INTRODUCTION> 前言概述 从2019年年底开始迅速扩散的新型冠状病毒肺炎(COVID-19,以下简称"新冠肺炎")疫情,对医疗机构的快速诊断能力提出了突如其来且非常严峻的挑战,利用人工智能(Artific…
AI(人工智能)是未来,是科幻小说,是我们日常生活的一部分.所有论断都是正确的,只是要看你所谈到的AI到底是什么. 例如,当谷歌DeepMind开发的AlphaGo程序打败韩国职业围棋高手Lee Se-dol,媒体在描述DeepMind的胜利时用到了AI.机器学习.深度学习等术语.AlphaGo之所以打败Lee Se-dol,这三项技术都立下了汗马功劳,但它们并不是一回事. 要搞清它们的关系,最直观的表述方式就是同心圆,最先出现的是理念,然后是机器学习,当机器学习繁荣之后就出现了深度学习,今天的…
谷歌AI涉足艺术.太空.外科手术,再强调AI七原则 https://mp.weixin.qq.com/s/MJG_SvKCEBKRvL3IWpL0bA 9月18日上午,Google在上海的2018世界AI 大会上举办了一场名为“AI触手可及”的主题论坛.在论坛上,Google全球副总裁.工程研究员Jay Yagnik 携Google 不同领域的研究者发表了演讲,重点阐述了Google AI在自家产品上的应用以及如何利用AI解决人类面临的医疗.宇宙探索等挑战. 谷歌全球副总裁.工程研究员Jay Y…
商业智能(BI)大家可能早已耳熟能详.从早期的报表自动化,到现在的复杂灵活分析,多平台支持,优秀的人机互动,多数据抽取,大数据整合,甚至和当下最火的人工智能都有结合点.可能一提到BI,大家都会自然而然地把这个话题丢给IT.但是由IT主导的BI项目最终是否能够落地? 为什么以技术为主导的IT部门做不好BI项目? 首先我认为BI是最直接,最重要地服务于商业决策者的,尤其是管理层.BI应用是否符合用户习惯,数据是否准确及时,是BI能否活下来的关键之关键.试想一个难以操作,挤满了图表,而且错误百出的BI…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由wataloo发表在专栏wataloo的试验田 1 设计概要 1.1 设计原则和目的 英雄AI的目的主要有: 1.新手过渡局,让玩家刚进入到游戏时,和较弱电脑对战,培养成就感,避免尚未熟悉游戏导致的挫折流失. 2.人机对战,给玩家练习新英雄或者挑战高难度电脑的机会. 3.温暖局,对连败玩家,匹配机器人去补偿一场胜利,舒缓连败挫折. 4.掉线托管,用强度合理的AI来补位掉线玩家,减少其他在线玩家的掉线局有损体验. 英雄AI的设计原则…
现代英特尔® 架构上的 TensorFlow* 优化 转自:https://software.intel.com/zh-cn/articles/tensorflow-optimizations-on-modern-intel-architecture 英特尔:Elmoustapha Ould-Ahmed-Vall,Mahmoud Abuzaina,Md Faijul Amin,Jayaram Bobba,Roman S Dubtsov,Evarist M Fomenko,Mukesh Ganga…