一.模型假设 传统多元线性回归模型 最重要的假设的原理为: 1. 自变量和因变量之间存在多元线性关系,因变量y能够被x1,x2-.x{k}完全地线性解释:2.不能被解释的部分则为纯粹的无法观测到的误差 其它假设主要为: 1.模型线性,设定正确: 2.无多重共线性: 3.无内生性: 4.随机误差项具有条件零均值.同方差.以及无自相关: 5.随机误差项正态分布 具体见另一篇文章:回归模型的基本假设 二.估计方法 目标:估计出多元回归模型的参数 注:下文皆为矩阵表述,X为自变量矩阵(n*k维),y为因…
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业…
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x1,  x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中: 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义…
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数,系数压缩趋近于0就可以认为舍弃该特征. 岭回归(Ridge Regression)和Lasso回归是在普通最小二乘线性回归的基础上加上正则项以对参数进行压缩惩罚. 首先,对于普通的最小二乘线性回归,它的代价函数是: 通过拟合系数β来使RSS最小.方法很简单,求偏导利用线性代数解方程组即可. 根据线…
补充:https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-276 如果用arima的话,还不如使用随机森林... 原文地址:https://medium.com/open-machine-learning-course/open-machine-learning-course-topic-9-time-series-analysis-in-python-a270cb05e0b3 数据集样子: y ti…
转自:http://www.cnblogs.com/zgw21cn/archive/2009/01/07/1361287.html 1.多元线性回归模型 假定被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型.即  (1.1) 其中为被解释变量,为个解释变量,为个未知参数,为随机误差项. 被解释变量的期望值与解释变量的线性方程为:  (1.2) 称为多元总体线性回归方程,简称总体回归方程. 对于组观测值,其方程组形式为:  (1.3) 即 其矩阵形式为 =+…
R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤.   1.选择预测变量   因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后…
1.问题引入  在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变量的线性回归方程代表一条直线.我们需要对线性回归结果进行统计分析. 例如,假设我们已知一些学生年纪和游戏时间的数据,可以建立一个回归方程,输入一个新的年纪时,预测该学生的游戏时间.自变量为学生年纪,因变量为游戏时间.当只有一个因变量时,我们称该类问题为简单线性回归.当游戏时间与学生年纪和学生性别有关…
线性回归模型(Linear Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 对于一份数据,它有两个变量,分别是Petal.Width和Sepal.Length,画出它们的散点图.我们希望可以构建一个函数去预测Sepal.Length,当我们输入Petal.Width时,可以返回一个预测的Sepal.Length.从散点图可以发现,可以用一条直线去拟合,这时我们可以构建一元线性回归模型:hθ(x) = θ0 + θ1x1 (x1= Pe…
前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也学习了LinearRegression的四个参数,fit_intercept.normalize.copy_X.n_jobs.然后介绍了LinearRegression的几个用法,fit(X,y).predict(X).score(X,y).最后学习了matplotlib.pyplot将训练集结果和…