【HNOI2008】Cards BZOJ 1004】的更多相关文章

Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目 前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝 色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌 法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难…
Burnside/Polya+背包DP 这道题目是等价类计数裸题吧……>_> 题解:http://m.blog.csdn.net/blog/njlcazl_11109/8316340 啊其实重点还是:找出每个置换下的不动点数目 这道题比较特殊,牌的数量是限定的,所以只能DP来搞……(dp[R][G][B]表示的是R张红牌,G张绿牌,B张蓝牌在当前这个置换下,有多少种方案是会置换回自身的) 恒等置换单独处理一下即可(其实就是总染色数,多重集排列数吧……$\frac{N!}{R!G!B!}$) 最…
题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意多次洗牌都可用这\(m\)种洗牌法中的一种代替",于是有了封闭性. 结合律显然成立. 题目中还保证了"对每种洗牌法,都存在一种洗牌法使得能回到原状态",逆元也有了. 只剩下一个单位元,我们手动补上.单位元就是不洗牌. 所以所有的洗牌方案构成了一个置换群.于是就可以用$Bunsid…
题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\(m\)种洗牌法中的一种代 替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态. 问你本质不同的染色方法有多少种. \(r,g,b\leq 20,m\leq 60\) 题解 对照置换群的定义,可以发现这\(m\)种置换加上恒等置换一共\(m+1\)中置换构成了一个置换群. 由burnside引理得到…
[BZOJ1010][HNOI2008]玩具装箱 题面 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度…
[BZOJ1004]Cards(组合数学,Burnside引理) 题面 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方 案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案. 两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用…
Cards [问题描述] 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,…
DP/KMP/矩阵乘法 好神的题啊……跪了跪了 $n\leq 10^9$是什么鬼……我们还是先不要考虑这个鬼畜的玩意了>_> 用类似数位DP的思路,我们可以想到一个DP方程:$f[i][j]$表示前 i 位数字,它的最后 j 位与不吉利串匹配的方案数,显然有$ans=\sum_{i=0}^x f[n][i]$ 然后就是转移的问题了= =那么依旧按照数位DP的想法(其实是硬扯到那的吧……怎么理解都可以,重点是明白转移方程)可以想到:从 i 转移到 i+1,有10种方案,其中一种会使得匹配长度+1…
DP/斜率优化 根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$ 其中 $$s[i]=\sum_{k=1}^{i} c[k] $$ 而$x$即为$s[i]-s[j]+i-j-1$ 这个$x$的表示实在太不好看,我们容易发现$i-j$其实是可以跟$s[i]-s[j]$合到一起的,即令 $c[i]=c[i]+1$,则$s[i]=\sum_{k=1}^{i} (c[i]+1)=\sum_{k=1}^{i}c[i]+i $,所以$…
Prufer序列/排列组合+高精度 窝不会告诉你我是先做了BZOJ1211然后才来做这题的>_>(为什么?因为我以前不会高精度呀……) 在A了BZOJ 1211和1089之后,蒟蒻终于有信心来写这道神题啦= = 嗯还是先说下做法吧~ …… 还是出门左转去看黄学长的博客吧……我懒得写了……其实就是Prufer序列+高精度= =嗯就是之前说的那两道题的加和…… http://hzwer.com/3272.html /*****************************************…