洛谷—— P2424 约数和】的更多相关文章

https://www.luogu.org/problemnew/show/P2424 记 \(\sigma(n)\) 为n的所有约数之和,例如 \(\sigma(6)=1+2+3+6=12\) . 求 \(ans(n)=\sum\limits_{i=x}^{y}\sigma(i)\) . 首先,记 \(f(n)=\sum\limits_{i=1}^{n}\sigma(i)\) ,则 \(ans(n)=f(y)-f(x-1)\) . 对于 \(f(n)=\sum\limits_{i=1}^{n}…
题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是,给定两个正整数X,Y(X<Y),Smart希望尽快地算出f(X)+f(X+1)+……+f(Y)的值,你能帮助Smart算出这个值吗? 输入输出格式 输入格式: 输入文件仅一行,两个正整数X和Y(X<Y),表示需要计算f(X)+f(X+1)+……+f(Y). 输出格式: 输出只有一行,为f(X)+…
https://www.luogu.org/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是,给定两个正整数X,Y(X<Y),Smart希望尽快地算出f(X)+f(X+1)+……+f(Y)的值,你能帮助Smart算出这个值吗? 输入输出格式 输入格式: 输入文件仅一行,两个正整数X和Y(X<Y),表示…
题目 约数和 题解 此题可以说完全就是一道数学题,不难看出这道题所求的是 \(\sum\limits_{i=x}^{y}{\sum\limits_{d|i}{d}}\) 的值. 很显然,用暴力枚举肯定会超时.所以我们可以反过来思考,采用枚举约数的方法,对于每个数 \(d\) , \(1\) 到 \(n\) 间满足是\(d\)的倍数的共有\(\lfloor \frac{n}{d} \rfloor\)个数.我们可以构造一个函数 \[f(n)=\sum\limits_{i=1}^{n}{\sum\li…
http://codevs.cn/problem/2606/ https://luogu.lohu.info/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是,给定两个正整数X,Y(X<Y),Smart希望尽快地算出f(X)+f(X+1)+……+f(Y)的值,你能帮助Smart算出这个值吗? 输入输出格…
本题的思想很好,正难则反 首先如果暴力枚举每个数的约数个数,一定会超时,那么我们就从约数的角度考虑,题目中问的是1~n的约数个数和,那么我们就枚举约数,看每个约数在1~n中出现过几次. #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #include <cmath> using namesp…
[SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ 输入输出格式 输入格式: 输入文件包含多组测试数据.第一行,一个整数\(T\),表示测试数据的组数.接下来的\(T\)行,每行两个整数\(N,M\). 输出格式: \(T\)行,每行一个整数,表示你所求的答案. 说明 \(1 \le N, M \le 50000\) \(1 \le T \le 50…
给出a和b求a^b的约数和. 题目描述 输入输出格式 输入格式: 一行两个数a,b. 输出格式: 一个数表示结果对 9901 的模. 输入输出样例 输入样例#1: 2 3 输出样例#1: 15 说明 对于 30%的数据,a,b≤ 10 对于 100%的数据,0 ≤ a,b ≤ 50 000 000 早上听大爷讲完数论马上回来补了一道 这题呢 我们首先可以吧a质因数分解 表示为p1^c1 × p2^c2 ×……× pn^cn 那么a^b就可以表示为p1^(c1*B) × p2^(c2*B) ×………
https://www.luogu.org/problemnew/show/P1403 可以直接用线性筛约数个数求出来,但实际上n以内i的倍数的个数为n/i的下整,要求的其实是 $$\sum\limits_{i=1}^{n}\lfloor\frac{n}{i}\rfloor$$ 可以直接分块搞出来. 甚至整除分块都可以优化: https://www.luogu.org/problemnew/solution/SP26073…
原题 就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数) 首先有引理(然而并没有证明): \(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\) 带到原式里得到: \(ans=\sum\limits_{i=1}\sum\limits_{j=1}\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\) 利用\…