分位数有种积分(累积)的含义在. 分位数(即将数据由低至高排列,小于该数的数据占总体的比例达到时最终落到的数): 10%:3000元 20%:5200元 50%:20000元 80%:41500元 90%:50000元 1. 分位数定义 分位数还是序列中的数,只不过序列要首先进行排序: quantile initially assigns the sorted values in X to the (0.5/n), (1.5/n), -, ([n – 0.5]/n) quantiles. For…
本文对应代码和数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 通过前面的文章,我们已经对geopandas中的数据结构.坐标参考系.文件IO以及基础可视化有了较为深入的学习,其中在基础可视化那篇文章中我们提到了分层设色地图,可以对与多边形关联的数值属性进行分层,并分别映射不同的填充颜色,但只是开了个头举了个简单的例子,实际数据可视化过程中的分层设色有一套策略方法. 作为基于geopandas的空间数据…
分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加是靠"+"号实现的,越后面其…
R语言  ggplot2包的学习   分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加…
https://www.cnblogs.com/nxld/p/6059603.html 分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开…
1.简单变换: 开方.平方.对数等 2.数据规范化: (1)离差标准化(最小最大标准化):消除量纲(单位)影响以及变异大小因素的影响. x1=(x-min)/(max-min) 代码:data1=(data-min())/(data.max()-data.min()) (2)标准差标准化(0-均值标准化)------消除单位影响以及变量自身变异影响. x1=(x-mean)/std 代码:data2=(data-data.mean())/data.std() 它有个特性,得到的数据负数较正数多,…
ggplot绘图之基本语法 2018年09月03日 22:29:56 一个人旅行*-* 阅读数 4332更多 分类专栏: R语言   1.ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离.按图层作图,保有命令式作图的调整函数,使其更具灵活性,并将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加是靠“+”号实现的,越后面其图层越高.…
在使用DataGridView编辑数据的时候,编辑的单元格一般会显示为文本框,逻辑值和图片会自动显示对应类型的列.当然我们自己可以手工选择列的类型,例如ComboBox列.Button列.Link列.在编辑数值和日期类型的时候,如果使用独立控件,我们会选择NumericUpDown和DataTimePicker,但在DataGridView中编辑的时候就只能用文本列.相比使用独立控件,文本框列缺少数值有效性检测,数值区间限制等功能.从本质上来看,.NET本身提供的DataGridViewChec…
1.数据错误: 错误类型– 脏数据或错误数据• 比如, Age = -2003– 数据不正确• '0' 代表真实的0,还是代表缺失– 数据不一致• 比如收入单位是万元,利润单位是元,或者一个单位是美元,一个是人民币– 数据重复 2.缺失值处理: 处理原则–缺失值少于20%•连续变量使用均值或中位数填补•分类变量不需要填补,单算一类即可,或者用众数填补–缺失值在20%-80%•填补方法同上•另外每个有缺失值的变量生成一个指示哑变量,参与后续的建模–缺失值在大于80%•每个有缺失值的变量生成一个指示…
前言 1. 删除重复 2. 异常值监测 3. 替换 4. 数据映射 5. 数值变量类型化 6. 创建哑变量 统计师的Python日记[第7天:数据清洗(1)] 前言 根据我的Python学习计划: Numpy → Pandas → 掌握一些数据清洗.规整.合并等功能 → 掌握类似与SQL的聚合等数据管理功能 → 能够用Python进行统计建模.假设检验等分析技能 → 能用Python打印出100元钱 → 能用Python帮我洗衣服.做饭 → 能用Python给我生小猴子...... 上一篇的数据…