[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 紫书上的原题: 链接 [代码] #include <bits/stdc++.h> #define ll long long using namespace std; const int N = 1e5; ll m,c1,c2,v1,v2; int main() { #ifdef LOCAL_DEFINE freopen("rush_in.txt","r",stdin); #endif i…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] KMP算法可以把"i前缀"pre[i] 分成ssssst的形式 这里t是s的前缀. 然后s其实就是pre[i]中的前 i+1-f[i]个字符组成的 字符串. 特殊的,t可能就是一个空串. 比如abcdefg 这里f是kmp算法中的f数组 然后t有两种可能 ① t==s 这样的话,整个前缀就是 sssssss..ss了 这里有(i)/(i-f[i])个s 设为num; 我们可以用这些s来构造ababababa的形式. 则…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 这一题和这一题很像 (链接 ) 会发现如果a[i]!=b[i]那么就按下i就好了. 然后改变和他相邻的点. 此后a[i]再也不可能和b[i]相同了. (其他点无论怎么按b[i]只会变大) 但是这样直接暴力写会超时->O(N^2). 则写一个队列. 处理和他相邻的点的时候. 如果发现a[y]==b[y] 就重新入队. 因为可以保证每个点最多操作一次. 所以复杂度就是O(n+m)的了. [代码] #include <bits/st…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 考虑l..r这个区间. 且r是满足a[r]-a[l]<=d的最大的r 如果是第一个找到的区间,则直接累加C(r-l+1,3); 然后l++ 然后考虑这个区间之后的下一个区间[l+1,R],这里R是满足a[R]-a[l+1]<=d的最大的R 如果R==r的话,l=l+1,continue; 否则. 如果l+1>r的话累加C(R-(l+1)+1,3); 如果l+1<=r的话 显然l..r和l+1..R之间有一个公共的部…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 优先把不是10的倍数的变成10的倍数. (优先%10比较大的数字增加 如果k还有剩余. 剩下的数字都是10的倍数了. 那么先加哪一个都可以了. [代码] #include <bits/stdc++.h> using namespace std; const int N = 1e5; int a[N+10],n,k; int b[N+10]; int point = 0; int main() { ios::sync_with_…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 从右往左维护最大值. 看到比最大值小(或等于)的话.就递增到比最大值大1就好. [代码] #include <bits/stdc++.h> using namespace std; const int N = 1e5; int a[N+10],n; int main() { cin >> n; for(int i = 1;i <= n;i++) cin >> a[i]; int now=0; fo…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 模拟题. 两个一起用->min(a,b); 剩下的除2加上去就好 [代码] #include <bits/stdc++.h> using namespace std; int a,b; int main() { cin >> a >> b; cout<<min(a,b)<<' '<<abs(a-b)/2<<endl; return 0; }…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 每个数字有3种选择. 1.选中它. 2.选中它且加阶乘符号 3.不选中它(即计算和的时候不考虑它) 如果我们直接暴力写的话复杂度是\(3^{25}\) 寻求优化. 我们可以用Meet-in-the-middle这个方法. 先求出1..n/2这些数字的组合方式. 用map<ll,ll> dic[25]来存它们的和. dic[i][j]表示前n/2个数字中选了i个[2]状态的数字,和为j的方案数. 则我们再穷举n/2+1..n这些…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 要求把连续的一段li..ri的边全都删掉. 然后求剩下的图的联通数 如果暴力的话 复杂度显然是O(k*m)级别的. 考虑我们把li..ri全都删掉. 接下来要做两件事. 第一是把1..li-1这些边连起来. 并查集1 然后是把ri+1..m这些边连起来. 并查集2 然后把并查集1和并查集2合并在一起求联通分量就好 两个并查集合在一起可以在线性复杂度内完成. 那么花费的时间就在1..li-1和ri+1,,m这两个并查集的获取上.…
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把B提取出来就是一个等比数列了. 求和一下会发现是这种形式. \(B*\frac{(A^n-1)}{A-1}+A^n*x\) 则求一下乘法逆元 写个快速幂就好 A-1的逆元就是\((A-1)^{MOD-2}\) 要注意A=1的情况. 然后n最大可能为10^18 所以乘的时候要先对其取模 不然会乘爆 [代码] #include <bits/stdc++.h> #define LL long long using namespac…