tensor 维度 问题。】的更多相关文章

http://wossoneri.github.io/2017/11/15/[Tensorflow]The-dimension-of-Tensor/ Tensor维度理解 Tensor在Tensorflow中是N维矩阵,所以涉及到Tensor的方法,也都是对矩阵的处理.由于是多维,在Tensorflow中Tensor的流动过程就涉及到升维降维,这篇就通过一些接口的使用,来体会Tensor的维度概念.以下是个人体会,有不准确的请指出. tf.reduce_mean reduce_mean( inp…
具体示例如下,注意观察维度的变化 #coding=utf-8 import torch """改变tensor的形状的四种不同变化形式""" def change_tensorSize(): x=torch.randn(2,4,3) s=x.transpose(1,2) y=x.view(2,3,4) z=x.permute(0,2,1) print(x) print(y) print(z) #expand_as #tensor.t()只能转化…
获取Tensor维度的两种方法: Tensor.get_shape() 返回TensorShape对象, 如果需要确定的数值而把TensorShape当作list使用,肯定是不行的. 需要调用TensorShape的as_list()方法, 需要调用TensorShape.as_list()方法来获取维度数值. 来实践一下: import tensorflow as tf a = tf.zeros(shape=[10,20]) b = a.get_shape() c = b.as_list()…
维度变换是tensorflow中的重要模块之一,前面mnist实战模块我们使用了图片数据的压平操作,它就是维度变换的应用之一. 在详解维度变换的方法之前,这里先介绍一下View(视图)的概念.所谓View,简单的可以理解成我们对一个tensor不同维度关系的认识.举个例子,一个[ b,28,28,1 ]的tensor(可以理解为mnist数据集的一组图片),对于这样一组图片,我们可以有一下几种理解方式: (1)按照物理设备储存结构,即一整行的方式(28*28)储存,这一行有连续的784个数据,这…
维度扩展 x.unsqueeze(n) 在 n 号位置添加一个维度 例子: import torch x = torch.rand(3,2) x1 = x.unsqueeze(0) # 在第一维的位置添加一个维度 x2 = x.unsqueeze(1) # 在第二维的位置添加一个维度 x3 = x.unsqueeze(2) # 在第三维的位置添加一个维度 print(x1.shape) print(x2.shape) print(x3.shape) >> torch.Size([1, 3, 2…
tf.argmax takes two arguments: input and dimension. example: tf.argmx(arr, dimension = 1). or tf.argmax(arr, 1). let arr is ndarray wrong: Since the indices of array arr are arr[rows, columns], I would expect tf.argmax(arr, 0) to return the index of…
torch.randn torch.randn(*sizes, out=None) → Tensor(张量) 返回一个张量,包含了从标准正态分布(均值为0,方差为 1)中抽取一组随机数,形状由可变参数sizes定义. 参数: sizes (int...) – 整数序列,定义了输出形状 out (Tensor, optinal) - 结果张量 二维 >>> import torch >>> torch.randn(2,3) tensor([[-1.0413, 0.8792…
broadcasting是tensorflow中tensor维度扩张的最常用的手段,指对某一个维度上重复N多次,虽然它呈现数据已被扩张,但不会复制数据. 可以这样理解,对 [b,784]@[784,10]+[10]这样一个操作([10]可以理解为偏置项),那么原式可以化为[b,10]+[10],但是[b,10]和[10]这两个tensor是不能直接相加的,两者必须化为相一致维度的单元才能相加,即,把[10]扩张为[b,10],两者才能相加,而broadcasting做的就是这样一件事. 如果上面…
05_pytorch的Tensor操作 目录 一.引言 二.tensor的基础操作 2.1 创建tensor 2.2 常用tensor操作 2.2.1 调整tensor的形状 2.2.2 添加或压缩tensor维度 2.3 索引操作 2.4 高级索引 2.5 Tensor类型 2.5.1 Tensor数据类型 2.5.2 数据类型转换 2.5.3 cpu和gpu间数据类型转换 2.6 逐元素操作 2.7 归并操作 2.8 比较 2.9 线性代数 三.Tensor和Numpy 3.1 tensor…
Tensor基本理论 深度学习框架使用Tensor来表示数据,在神经网络中传递的数据均为Tensor. Tensor可以将其理解为多维数组,其可以具有任意多的维度,不同Tensor可以有不同的数据类型 (dtype) 和形状 (shape). 同一Tensor的中所有元素的dtype均相同.如果对 Numpy 熟悉,Tensor是类似于 Numpy array 的概念. Tensor创建 首先,创建一个 Tensor , 并用 ndim 表示 Tensor 维度的数量: 1. 创建类似于vect…
Tensor基础实践 飞桨(PaddlePaddle,以下简称Paddle)和其他深度学习框架一样,使用Tensor来表示数据,在神经网络中传递的数据均为Tensor. Tensor可以将其理解为多维数组,其可以具有任意多的维度,不同Tensor可以有不同的数据类型 (dtype) 和形状 (shape). 同一Tensor的中所有元素的dtype均相同.如果对 Numpy 熟悉,Tensor是类似于 Numpy array 的概念. Tensor的创建 首先,让开始创建一个 Tensor ,…
摘要:Tensor,它可以是0维.一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便. 本文分享自华为云社区<Tensor:Pytorch神经网络界的Numpy>,作者: 择城终老 . Tensor Tensor,它可以是0维.一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便. 但它们也不相同,最大的区别就是Numpy会把ndarray放在CPU中进行加速运…
本文是基于TensorRT 5.0.2基础上,关于其内部的yolov3_onnx例子的分析和介绍. 本例子展示一个完整的ONNX的pipline,在tensorrt 5.0的ONNX-TensorRT基础上,基于Yolov3-608网络进行inference,包含预处理和后处理. 首先,从作者网站下载yolov3,然后将其转换成onnx形式,接着基于onnx的graph生成一个tensorrt engine; 然后,在样本图片上进行预处理,并将结果作为engine的输入; 在inference之…
1. torch.renorm(input, p, dim, maxnorm, out=None) → Tensor Returns a tensor where each sub-tensor of input along dimension dim is normalized such that the p-norm of the sub-tensor is lower than the value maxnorm. 解释:返回一个张量,包含规范化后的各个子张量,使得沿着dim维划分的各子张…
转自 [译]与TensorFlow的第一次接触(三)之聚类 2016.08.09 16:58* 字数 4316 阅读 7916评论 5喜欢 18 前一章节中介绍的线性回归是一种监督学习算法,我们使用数据与输出值(标签)来建立模型拟合它们.但是我们并不总是有已经打标签的数据,却仍然想去分析它们.这种情况下,我们可以使用无监督的算法如聚类.因为聚类算法是一种很好的方法来对数据进行初步分析,所以它被广泛使用. 本章中,会讲解K-means聚类算法.该算法广泛用来自动将数据分类到相关子集合中,每个子集合…
最近从tensorflow转向pytorch,感受到了动态调试的方便,也感受到了一些地方的不同. 所有实验都是基于uint16类型的单通道灰度图片. 一开始尝试用opencv中的cv.imread读取图片,发现会默认读8位数据...后来还是改用了skimage读取图片.一个小坑. 在tensorflow中: 利用append得到数组x_test  [batchsize,width,hight] x_test = x_test[:, :, :, np.newaxis] # 占位符 x=tf.pla…
在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁.方便,这其实完全类似于Caffe的python接口,但是由于框架底层的实现不一样,tf无论是在单机还是分布式设备上的实现效率都受到一致认可. CNN网络中的卷积和池化层应该怎么设置呢?tf相应的函数是什么?具体的tutorial地址参见Tensorflow中文社区. 卷积(Convolution)…
[ 今天最开心的事情! ] PyTorch的stable版本更新为1.0之后,原本3D模型无脑out of memory.3D模型torch.backends.cudnn.benchmark必须False的问题总算解决了!!!*★,°*:.☆( ̄▽ ̄)/$:*.°★* . 在训练ResNet50 I3D时发现,benchmark在3D模型训练时仍然要为False! [ PyTorch基础API ] PyTorch中基础API包括: Network architecture: torch.nn.M…
1.TensorFlow中Tensor维度理解: (1)对于2维Tensor 0维对应列 1维对应行 (2)维度操作举例: 对于k维的,tf.reduce_sum(x, axis=k-1)的结果是对最里面一维所有元素进行求和. tf.reduce_sum(x, axis=k-2)是对倒数第二层里的向量对应的元素进行求和. tf.reduce_sum(x, axis=k-3)把倒数第三层的每个向量对应元素相加. 2.tensorflow中用来拼接张量的函数tf.concat(),用法: tf.co…
上一节我们提到G和D由多层感知机定义.深度学习中对图像处理应用最好的模型是CNN,那么如何把CNN与GAN结合?DCGAN是这方面最好的尝试之一.源码:https://github.com/Newmu/dcgan_code .DCGAN论文作者用theano实现的,他还放上了其他人实现的版本,本文主要讨论tensorflow版本.  TensorFlow版本的源码:https://github.com/carpedm20/DCGAN-tensorflow DCGAN把上述的G和D换成了两个卷积神…
在mask中定义true,保留与其进行运算的tensor里的部分内容,相当于投影的功能. mask与tensor的维度可以不相同的,但是对应的长度一定要相同,也就是要有一一对应的部分: 结果的维度 = tensor维度 - mask维度 + 1 以下是参考连接的例子,便于理解:…
pytorch数学运算与统计属性入门1.Broadcasting (维度)自动扩展,具有以下两个重要特征:(1)expand (2)without copying data重点的核心实现功能是:(1)在前面增加缺失的维度(2)将其中新增加的维度的size扩展到需要相互运算的tensor维度的same size 图12.broadcasting自动扩展=unsqueeze(增加维度)+expand(维度扩展) 图23.tensor的合并与分割:(1)合并API1)Cat:对数据进行维度上的合并,不…
tf.boolean_mask 的作用是 通过布尔值 过滤元素 def boolean_mask(tensor, mask, name="boolean_mask", axis=None): """Apply boolean mask to tensor. tensor:被过滤的元素 mask:一堆 bool 值,它的维度不一定等于 tensor return: mask 为 true 对应的 tensor 的元素 当 tensor 与 mask 维度一致…
THLongStorage *THTensor_(newSizeOf)(THTensor *self); THLongStorage *THTensor_(newStrideOf)(THTensor *self); 把THTensor的size/stride数据提取出来,赋值给一个新的THLongStorage并返回 TH_API void THTensor_(narrow)(THTensor *self, THTensor *src, int dimension, long firstInde…
如果您希望能有一种简单.高效且灵活的方式把 TensorFlow 模型集成到 Flutter 应用里,那请您一定不要错过我们今天介绍的这个全新插件 tflite_flutter.这个插件的开发者是 Google Summer of Code(GSoC) 的一名实习生 Amish Garg,本文来自他在 Medium 上的一篇文章<在 Flutter 中使用 TensorFlow Lite 插件实现文字分类>. tflite_flutter 插件的核心特性: 它提供了与 TFLite Java…
AI框架类FAQ 数据处理 问题:如何在训练过程中高效读取数量很大的数据集? 答复:当训练时使用的数据集数据量较大或者预处理逻辑复杂时,如果串行地进行数据读取,数据读取往往会成为训练效率的瓶颈.这种情况下通常需要利用多线程或者多进程的方法异步地进行数据载入,从而提高数据读取和整体训练效率. paddle1.8中推荐使用两个异步数据加载的API: DataLoader.from_generator,有限的异步加载 该API提供了单线程和单进程的异步加载支持.但由于线程和进程数目不可配置,所以异步加…
作者:褚超群 | 旷视科技 MegEngine 架构师 背景介绍 在算法研究的过程中,算法同学们可能经常会尝试定义各种新的神经网络层(neural network layer),比如 Layer Norm,Deformable Conv 等.为了实现这些层以进行实验,算法同学可以使用神经网络框架或者 numpy 中提供的基础操作(如张量/标量的加减乘除等)去组合出所需的层的功能.然而这通常会造成这些层的性能断崖式的下跌,大大影响了算法同学们尝试新算法的效率.所以很多情况下,算法同学们会选择为自己…
Tensor是一种特殊的数据结构,非常类似于数组和矩阵.在PyTorch中,我们使用tensor编码模型的输入和输出,以及模型的参数. Tensor类似于Numpy的数组,除了tensor可以在GPUs或其它特殊的硬件上运行以加速运算.如果熟悉ndarray,那么你也会熟悉Tensor API.如果不是,跟随此快速API上手. import torch import numpy as np Tensor 初始化 Tensor可以通过多种途径初始化.看看下面的例子: 直接从数据中初始化 Tenso…
PyTorch 广播机制 定义 PyTorch的tensor参数可以自动扩展其大小.一般的是小一点的会变大,来满足运算需求. 规则 满足一下情况的tensor是可以广播的. 至少有一个维度 两个tensor维度相等 维度不等,其中一个为1 维度不等,其中一个维度不存在 计算过程规则. 维度不同,小维度的增加维度 每个维度,计算结果取大的 扩展维度是对数值进行复制 例子 # 广播机制 a = torch.arange(3).reshape((3, 1)) b = torch.arange(2).r…
一些基础的操作: import torch as th a=th.rand(3,4) #随机数,维度为3,4的tensor b=th.rand(4)print(a)print(b) a+b tensor([[0.3777, 0.4128, 0.6244, 0.7772], [0.0859, 0.9350, 0.1705, 0.9116], [0.4136, 0.1211, 0.5960, 0.8962]]) tensor([0.5063, 0.4809, 0.4810, 0.4716]) ten…