迭代方法图(图 1)包含一个标题为“计算参数更新”的华而不实的绿框.现在,我们将用更实质的方法代替这种华而不实的算法. 假设我们有时间和计算资源来计算 w1 的所有可能值的损失.对于我们一直在研究的回归问题,所产生的损失与 w1 的图形始终是凸形.换言之,图形始终是碗状图,如下所示: 图 2. 回归问题产生的损失与权重图为凸形. 凸形问题只有一个最低点:即只存在一个斜率正好为 0 的位置.这个最小值就是损失函数收敛之处. 通过计算整个数据集中 w1 每个可能值的损失函数来找到收敛点这种方法效率太…
正如之前所述,梯度矢量具有方向和大小.梯度下降法算法用梯度乘以一个称为学习速率(有时也称为步长)的标量,以确定下一个点的位置.例如,如果梯度大小为 2.5,学习速率为 0.01,则梯度下降法算法会选择距离前一个点 0.025 的位置作为下一个点. 超参数是编程人员在机器学习算法中用于调整的旋钮.大多数机器学习编程人员会花费相当多的时间来调整学习速率.如果您选择的学习速率过小,就会花费太长的学习时间: 图 6. 学习速率过小. 相反,如果您指定的学习速率过大,下一个点将永远在 U 形曲线的底部随意…
原文链接:https://developers.google.com/machine-learning/crash-course/reducing-loss/ 为了训练模型,需要一种可降低模型损失的好方法.迭代方法是一种广泛用于降低损失的方法,而且使用起来简单有效. 1- 迭代方法 用于训练模型的迭代试错过程(迭代方法): 迭代策略可以很好地扩展到大型数据集,因此在机器学习中的应用非常普遍. “模型”部分将一个或多个特征作为输入,然后返回一个预测作为输出. “计算损失”部分是模型将要使用的损失函…
在梯度下降法中,批量指的是用于在单次迭代中计算梯度的样本总数.到目前为止,我们一直假定批量是指整个数据集.就 Google 的规模而言,数据集通常包含数十亿甚至数千亿个样本.此外,Google 数据集通常包含海量特征.因此,一个批量可能相当巨大.如果是超大批量,则单次迭代就可能要花费很长时间进行计算. 包含随机抽样样本的大型数据集可能包含冗余数据.实际上,批量大小越大,出现冗余的可能性就越高.一些冗余可能有助于消除杂乱的梯度,但超大批量所具备的预测价值往往并不比大型批量高. 如果我们可以通过更少…
1.线性回归 人们早就知晓,相比凉爽的天气,蟋蟀在较为炎热的天气里鸣叫更为频繁.数十年来,专业和业余昆虫学者已将每分钟的鸣叫声和温度方面的数据编入目录.Ruth 阿姨将她喜爱的蟋蟀数据库作为生日礼物送给您,并邀请您自己利用该数据库训练一个模型,从而预测鸣叫声与温度的关系. 首先建议您将数据绘制成图表,了解下数据的分布情况: 图 1. 每分钟的鸣叫声与温度(摄氏度)的关系. 毫无疑问,此曲线图表明温度随着鸣叫声次数的增加而上升.鸣叫声与温度之间的关系是线性关系吗?是的,您可以绘制一条直线来近似地表…
机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学习入门01 - 框架处理(Framing) https://www.cnblogs.com/anliven/p/10252938.html 机器学习基本术语. 了解机器学习的各种用途. 机器学习入门02 - 深入了解机器学习 (Descending into ML) https://www.cnbl…
1 - MLCC 通过机器学习,可以有效地解读数据的潜在含义,甚至可以改变思考问题的方式,使用统计信息而非逻辑推理来处理问题. Google的机器学习速成课程(MLCC,machine-learning crash-course):https://developers.google.com/machine-learning/crash-course/ 支持多语言,共25节课程,包含40多项练习,有对算法实际运用的互动直观展示,可以更容易地学习和实践机器学习概念. 官方预估时间大约15小时(实际花…
Coursera台大机器学习基础课程学习笔记 -- 1 最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一 机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance a…
上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matlab的编程入门还是比较容易的. 在这里想讲一下matlab和Python的区别: 吴恩达教授在刚开始教机器学习课程的时候,主要用的是matlab/octave,他给出的理由是利用matlab/octave学生能够更快更好地学习并掌握机器学习算法.这只是当时的情况,在后期吴恩达教授深度学习课程的教学中…
解读官方API-Qt速成课程 参考:http://www.pyqtgraph.org/documentation/qtcrashcourse.html Qt速成课程 PyQtGraph广泛使用Qt来生成几乎所有的可视化输出和接口.Qt的文档编写得非常好,我们鼓励所有pyqtgraph开发人员熟悉它. 本节的目的是介绍使用Qt(使用PyQt或PySide)为pyqtgraph开发人员编程. QWidgets和布局 Qt GUI几乎总是由几个基本组件组成: 一个窗口.这通常由QMainWindow提…
(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Learn Better? 每个部分由四节课组成,总共有16节课.那么,从这篇开始,我们将连续对这门课做课程笔记,共16篇,希望能对正在看这们课的童鞋有所帮助.下面开始第一节课的笔记:The Learning Problem. 一.What…
目录 什么是线性回归 最小二乘法 一元线性回归 多元线性回归 什么是规范化 Python代码(sklearn库) 什么是线性回归(Linear regression) 引例 假设某地区租房价格只与房屋面积有关,我们现有数据集,请用一条直线尽量去拟合所给的数据,从而达到预测房屋价格的效果. 在引例中,面积是自变量,租金是因变量.使用直线去拟合训练集的数据,可得到面积-租金的函数:,即线性回归模型.利用此模型,输入面积后,便可预测出对应的租金. 百度百科定义 线性回归是利用数理统计中回归分析,来确定…
React + GraphQL 2020 速成课程 technologies React (to build our user interface) GraphQL (to get and change data in a declarative way) Apollo Client (to allow us to use React and GraphQL together) Hasura (to create and manage our GraphQL API + database) im…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 这一周的内容是机器学习介绍和梯度下降法.作为入…
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是stanford的machine learning公开课,在verycd可下载,可惜没有翻译.不过还是可以看.另外一个是prml-pattern recogni…
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output layer)…
Goal of training a model is to find a set of weights and biases that have low loss, on average, across all examples. —— Descending into ML: Training and Loss 注释:教程中的 loss ≠ 平均方差,而是指单个 labeled example 的方差(也就是误差 loss ),这里的 reducing loss 是指减小整体的误差(就是 MS…
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课程例如Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,经典书籍例如<统计学习方法>等,同时也参考了大量网上的相关资料(在后面列出).    前言 机器学习中的大部分问题都是优化问题,而绝大部分优化问题都可以使用梯度下降法处理,那么搞懂什么是梯度,…
机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等.于是就有了这篇文章. 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic gradient descent)和批量梯度下降(Batch gradient descent).以及他们在python中的实现. 梯度下降法 梯度下降是…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
1.从用户那里获取信息 name = "Alex" print("hello" + name) 2.让python成为你的计算器 1 print(4+5) 2 print(3-2) 3 print(2*3) 4 print(1/3) 5 print(((2+3)/3+5)*5) 6 print(2**10) 3.python语法基本介绍 Python基本数据类型一般分为:数字.字符串.列表.元组.字典.集合这六种基本数据类型.浮点型.复数类型.布尔型(布尔型就是只有…
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by…
总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构化学习等,这个好理解,离散的是分类,连续的是回归,到是结构化的学习接触的相对较少,以后有空可以关注下. 按照数据标记分可以分为: 监督: 非监督: 半监督: 增强学习: 下面这张ppt很好的总结了这点: 这是围绕标记yn的类型进行分类的, 监督和非监督很好理解,半监督和增强其实应用更加普遍,数据的标…
目录 推荐模型的分类 ALS交替最小二乘算法:显式矩阵分解 Spark Python代码:显式矩阵分解 ALS交替最小二乘算法:隐式矩阵分解 Spark Python代码:隐式矩阵分解 推荐模型的分类 最为流行的两种方法是基于内容的过滤.协同过滤. 基于内容的过滤: 比如用户A买了商品A,商品B与商品A相似(这个相似是基于商品内部的属性,比如“非常好的协同过滤入门文章”和“通俗易懂的协同过滤入门教程”比较相似),那么就能将商品B推荐给用户. 协同过滤: 利用的是训练数据是大量用户对商品的评分,即…
目录 什么是决策树(Decision Tree) 特征选择 使用ID3算法生成决策树 使用C4.5算法生成决策树 使用CART算法生成决策树 预剪枝和后剪枝 应用:遇到连续与缺失值怎么办? 多变量决策树 Python代码(sklearn库) 什么是决策树(Decision Tree) 引例 现有训练集如下,请训练一个决策树模型,对未来的西瓜的优劣做预测. 先不谈建立决策树模型的算法,我们先看一下基于“信息增益”(后面讲)生成的决策树的样子 一棵决策树包含一个根节点.若干个内部节点.若干个叶节点.…
目录 一元线性回归.多元线性回归.Logistic回归.广义线性回归.非线性回归的关系 什么是极大似然估计 逻辑斯谛回归(Logistic回归) 多类分类Logistic回归 Python代码(sklearn库) 一元线性回归.多元线性回归.逻辑斯谛回归.广义线性回归.非线性回归的关系 通过上图(插图摘自周志华<机器学习>及互联网)可以看出: 线性模型虽简单,却拥有着丰富的变化.例如对于样例,当我们希望线性模型的预测值逼近真实标记y时,就得到了线性回归模型:.当令模型逼近y的衍生物,比如时,就…
极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www.cnblogs.com/bourneli/p/4198839.html 这位博主总结的很详细:http://www.cnblogs.com/xbf9xbf/p/4617120.html 这节课提出了一个重要的概念--maxmum margin(它和hinge loss是线性SVM最重要的两个部分)…
将Radial Basis Function与Network相结合.实际上衡量两个点的相似性:距离越近,值越大. 将神经元换为与距离有关的函数,就是RBF Network: 可以用kernel和RBF来衡量相似性: 那么如何选中心点呢,一种方法是把所有看过的资料都当做中心点,这就是 FULL NETWORK: 用所有的点作中心太麻烦,可以选择某几个点来投票,这就是KNN(具体可参考机器学习实战): 之前投票的y就是资料的标签,如果每笔资料都不同的话,可以得到一个简洁的贝塔: 减少中心点(相当于选…
什么是(监督)机器学习?简而言之,它是以下几点: ML系统学习如何组合输入以产生对从未见过的数据的有用预测. 我们来探讨基本的机器学习术语. 标签 一个标签是我们预测物品的属性,比如变量y在简单线性回归变量.标签可以是小麦的未来价格,图片中显示的动物的种类,音频剪辑的含义或任何东西. 特征 一个特征是一个输入变量 - x简单线性回归中的变量.一个简单的机器学习项目可能会使用单一功能,而更复杂的机器学习项目可能会使用数百万个功能,具体如下: {X1,X2,...Xñ} 在垃圾邮件检测器示例中,功能…
目录 什么是支持向量机(SVM) 线性可分数据集的分类 线性可分数据集的分类(对偶形式) 线性近似可分数据集的分类 线性近似可分数据集的分类(对偶形式) 非线性数据集的分类 SMO算法 合页损失函数 Python代码(sklearn库) 什么是支持向量机(SVM) 引例 假定有训练数据集,其中,x是向量,y=+1或-1.试学习一个SVM模型. 分析:将线性可分数据集区分开的超平面有无数个,但是SVM要做的是求解一个最优的超平面,最优意味着模型的泛化能力越强,具体做法就是选择使间隔最大的超平面.在…