UVA 11014 - Make a Crystal(容斥原理)】的更多相关文章

UVA 11014 - Make a Crystal 题目链接 题意:给定一个NxNxN的正方体,求出最多能选几个整数点.使得随意两点PQ不会使PQO共线. 思路:利用容斥原理,设f(k)为点(x, y, z)三点都为k的倍数的点的个数(要扣掉一个原点O).那么全部点就是f(1),之后要去除掉共线的,就是扣掉f(2), f(3), f(5)..f(n).n为素数.由于这些素数中包括了合数的情况,而且这些点必定与f(1)除去这些点以外的点共线,所以扣掉.可是扣掉后会扣掉一些反复的.比方f(6)在f…
给定一个n*n*n的立方体(中心点为原点O),选择尽量多的点,使得对于任意两点A,B,B不在线段OA上. 可以发现,原问题可转化为三维坐标下的点(x,y,z)中有多少个点的gcd(x,y,z)=1. 这道题我一开始想用欧拉函数做,但我发现需要求出1-n中与每个整数x互质的数的个数,于是试图修改一下欧拉函数的公式,结果发现计算出来的结果存在微小的偏差,原因是n不一定能被x的所有因子整除,使得(n/p)*(n/q)≠n/pq.被逼无奈,于是学了莫比乌斯反演. 莫比乌斯反演的做法是:令$n=n/2$,…
UVA.10325 The Lottery (组合数学 容斥原理) 题意分析 首先给出一个数n,然后给出m个数字(m<=15),在[1-n]之间,依次删除给出m个数字的倍数,求最后在[1-n]之间还剩下多少个数字(包括1和n),已知m个数字中不会包含1(否则全部都被刷掉了). 前置技能 1. 给出数字s,在[1-n]之间,s的倍数有n/s个. 2. 给出数字s1,和s2,在[1-n]之间,既是s1的倍数,又是s2的倍数,有n/lcm(s1,s2)个. 3. 给出数字s1,s2--sk(共k个数字…
这个题是根据某个二维平面的题改编过来的. 首先把问题转化一下, 就是你站在原点(0, 0, 0)能看到多少格点. 答案分为三个部分: 八个象限里的格点,即 gcd(x, y, z) = 1,且xyz均不为0. 可以先假设xyz都是整数,然后将所求的答案乘8 12个四分之一平面中的点,可以先算(x, y, 0)(x > 0, y > 0)这样的点的个数,然后乘12 坐标轴上距原点距离为1的6个点 三维对应的莫比乌斯公式就是: 在这道题里面就是 X = Y = Z = N / 2 这道题用容斥原理…
题意:给定一个NxNxN的正方体,求出最多能选几个整数点,使得任意两点PQ不会使PQO共线. 思路:利用容斥原理,设f(k)为点(x, y, z)三点都为k的倍数的点的个数(要扣掉一个原点O),那么所有点就是f(1),之后要去除掉共线的,就是扣掉f(2), f(3), f(5)..f(n),n为素数.因为这些素数中包含了合数的情况,并且这些点必然与f(1)除去这些点以外的点共线,所以扣掉.但是扣掉后会扣掉一些重复的,比如f(6)在f(3)和f(2)各被扣了一次,所以还要加回来,利用容斥原理,答案…
题目链接:12075 - Counting Triangles 题意:求n * m矩形内,最多能组成几个三角形 这题和UVA 1393类似,把总情况扣去三点共线情况,那么问题转化为求三点共线的情况,对于两点,求他们的gcd - 1,得到的就是他们之间有多少个点,那么情况数就能够求了,然后还是利用容斥原理去计数,然后累加出答案 代码: #include <stdio.h> #include <string.h> #include <algorithm> using nam…
The Sports Association of Bangladesh is in great problem with their latest lottery `Jodi laiga Jai'. Thereare so many participants this time that they cannot manage all the numbers. In an urgent meeting theyhave decided that they will ignore some num…
自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n的矩形网格里放k个相同的石子,问有多少种方法? 限制条件:每个格子最多放一个石子,所有石子都要用完,并且第一行.最后一行.第一列.最后一列都得有石子. 思路: 直接求的话会比较麻烦,反过来想: 设总方案数为S,A={第一行没有石子},B={最后一行没有石子},C={第一列没有石子},D={最后一列没有石子}…
<训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using namespace std; ; ; int C[MAXN][MAXN]; void init() { memset( C, , sizeof(C) ); C[][] = ; ; i < MAXN; ++i ) { C[i][] = C[i][i] = ; ; j < i; ++j ) C[i][j]…
题意: 给出一个n行m列的点阵,求共有多少条非水平非竖直线至少经过其中两点. 分析: 首先说紫书上的思路,编程较简单且容易理解.由于对称性,所以只统计“\”这种线型的,最后乘2即是答案. 枚举斜线包围盒的大小,如果盒子的长宽ab互质,则是可以的.这种盒子共有(m-a)(n-b)个,但要减去其中重复的.如果有一个长宽为2a和2b的大盒子,则计数右下角的小盒子的同时,左上角的小盒子会重复,所以要减去重复的盒子的个数c = max(0, m-2a) * max(0, n-2b) 最后gcd(a, b)…