#include <iostream>#include <opencv2/opencv.hpp> using namespace cv;using namespace std; int main(int argc,char** argv) { Mat img1, img2,img3,img1_1; img1 = imread("D://images//4.jpg"); if (img1.empty()) { cout <<"could no…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 下面主要学习图像灰度化的知识,结合OpenCV调用 cv2.cvtColor()函数实现图像灰度化,使用像素处理方法对图像进行灰度化处理. 1.  图像灰度化 1.1  图像灰度化原理 图像灰度化是将一幅彩色图像转换为灰度化图像的过程.彩色图像通常包括R.G.B三个分量,分别显示出红绿蓝等各种颜色,灰度…
目的 我们将探索以下问题的答案: 如何遍历图像中的每一个像素? OpenCV的矩阵值是如何存储的? 如何测试我们所实现算法的性能? 查找表是什么?为什么要用它? 测试用例 这里我们测试的,是一种简单的颜色缩减方法.如果矩阵元素存储的是单通道像素,使用C或C++的无符号字符类型,那么像素可有256个不同值.但若是三通道图像,这种存储格式的颜色数就太多了(确切地说,有一千六百多万种).用如此之多的颜色可能会对我们的算法性能造成严重影响.其实有时候,仅用这些颜色的一小部分,就足以达到同样效果. 这种情…
PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)> Introduction to programming with OpenCV OpenCV编程简单介绍 Gady Agam Department of Computer Science January 27, 2006 Illinois Institute o…
转自: OpenCV 教程 使用 图像金字塔 进行缩放 图像金字塔是视觉运用中广泛采用的一项技术.一个图像金字塔是一系列图像的集合 - 所有图像来源于同一张原始图像 - 通过梯次向下采样获得,直到达到某个终止条件才停止采样.有两种类型的图像金字塔常常出现在文献和应用中: 高斯金字塔(Gaussian pyramid): 用来向下采样 拉普拉斯金字塔(Laplacian pyramid): 用来从金字塔低层图像重建上层未采样图像 高斯金字塔 每一层都按从下到上的次序编号, 层级  (表示为  ,尺…
最近一段时间学习并做的都是对图像进行处理,其实自己也是新手,各种尝试,所以我这个门外汉想总结一下自己学习的东西,图像处理的流程.但是动起笔来想总结,一下却不知道自己要写什么,那就把自己做过的相似图片搜索的流程整理一下,想到什么说什么吧. 首先在进行图片灰度化处理之前,我觉得有必要了解一下为什么要进行灰度化处理. 图像灰度化的目的是什么? 将彩色图像转化为灰度图像的过程是图像的灰度化处理.彩色图像中的每个像素的颜色由R,G,B三个分量决定,而每个分量中可取值0-255,这样一个像素点可以有1600…
在OpenCV中我们经常会遇到一个名字:Mask(掩膜).很多函数都使用到它,那么这个Mask到底是什么呢,下面我们从图像基本运算开始,一步一步学习掩膜. 1,图像算术运算 图像的算术运算有很多种,比如两幅图像可以相加,相减,相乘,相除,位运算,平方根,对数,绝对值等:图像也可以放大,缩小,旋转,还可以截取其中的一部分作为ROI(感兴趣区域)进行操作,各个颜色通道还可以分别提取对各个颜色通道进行各种运算操作.总之,对图像可以进行的算术运算非常的多.这里先学习图片间的数学运算,图像混合,按位运算.…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 1,简单几何图像绘制 简单几何图像一般包括点,直线,矩阵,圆,椭圆,多边形等等. 下面学习一下 opencv对像素点的定义.图像的一个像素点有1或3个值,对灰度图像有一个灰度值,对彩色图像有3个值组成一个像素值,他们表现出不同的颜色. 其实有了点才能组成各种多边形,才能对多边形进行轮廓检测,所以下面先练…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 准备:图像转数组,数组转图像 将RGB图像转换为一维数组的代码如下: # 图像二维像素转换为一维 img = cv2.imread(filename=img_path) data = img.reshape((-1, 3)) data = np.float32(data) print(img.shape…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 特征点检测广泛应用到目标匹配,目标跟踪,三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色,角点,特征点,轮廓,纹理等特征.而下面学习常用的特征点检测. 总结一下提取特征点的作用: 1,运动目标跟踪 2,物体识别 3,图像配准 4,全景图像拼接 5,三维重建 而一种重要的点…
正如第4篇文章所说的图像直方图在特征提取方面有着很重要的作用,本文将举两个实际工程中非常实用的例子来说明图像直方图的应用. 一.直方图的反向映射. 我们以人脸检测举例,在人脸检测中,我们第一步往往需要先提取图像中皮肤区域来缩小人脸的检测范围,这一般获得皮肤的颜色范围还需要定义阈值并不断的调整,实际中参数太多而不容易控制. 这里我们就可以考虑用直方图的反射映射. 1,收集人脸皮肤样本. 2,拼合样本并计算其颜色直方图. 3,将得到的样本颜色直方图反射映射到待检测的图片中,然后进行阈值化即可. 这里…
一.图像直方图的概念 图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的.纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比. 图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征.在实际工程中,图像直方图在特征提取.图像匹配等方面都有很好的应用. 二.利用OpenCV计算图像的直方图 OpenCV中计算图像直方图像函数是calcHist,它的参数比较多,下面分析一下它的接口和用法. void calcH…
在实际应用中,我们的图像常常会被噪声腐蚀,这些噪声或是镜头上的灰尘或水滴,或是旧照片的划痕,或者是图像遭到人为的涂画(比如马赛克)或者图像的部分本身已经损坏.如果我们想让这些受到破坏的额图片尽可能恢复到原样,Opencv能帮我们做到吗? OpenCV真的有这个妙手回春的功能!别以为图像修补的工作只能用PS或者美图秀秀那些软件去做,其实由程序员自己写代码去做更加高效! 图像修复技术的原理是什么呢? 简而言之,就是利用那些已经被破坏的区域的边缘, 即边缘的颜色和结构,根据这些图像留下的信息去推断被破…
阅读对象:可以配置opencv+Python环境的任何人,毕竟写这篇文章的人就是小白. 1.环境说明 1.1opencv版本: 1.2Python版本: 1.3系统:win7 注: (1)opencv安装教程:http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_setup/py_setup_in_windows/py_setup_in_windows.html#install-opencv-python-i…
代码如下: #include <cv.h> #include <highgui.h> using namespace cv; int main( int argc, char** argv ) { ) { printf(]); ; } ]; Mat image; image = imread( imageName, CV_LOAD_IMAGE_COLOR); if( !image.data ) { printf( " No image data \n " );…
一.读取图片 opencv中采用imread() 函数读取图像 imread(filename, flags=None)     filename 图片的路径     flags 图像读取方式 ● cv2.IMREAD_COLOR : 加载彩色图像, 图像的任何透明度都将被忽略(默认). ● cv2.IMREAD_GRAYSCALE : 以灰度模式加载图像. ● cv2.IMREAD_UNCHANGED : 加载包含Alpha通道的图像. 也可以使用1, 0 or -1代替,源码中,IMREAD…
最近在将Karlsruhe Institute of Technology的Andreas Geiger发表在ACCV2010上的Efficent Large-Scale Stereo Matching代码仿真.Andreas提供的源码中没有使用opencv,导致我一时无法适应如何显示处理的中间结果.将对应的库加载后,仿照采集相机图像数据的方式,从内存中读取对应图像到IplImage类型指针指定的内存空间,方便代码的调试和效果观测.其中用到的部分资料如下. *******************…
     昨天的博文写了定时记录操作系统行为,其实说白了就是抓取了击键的记录和对应窗口的标题栏,而很多应用程序标题栏又包含当时记录的文件路径和文件名,用这种方式可以大致记录操作了哪些程序,打开了哪些文件,以及敲击了哪些按键.事实上这样记录操作系统的行为显得相对单薄一点,因为记录的内容不太形象,对于新手来说太过于隐晦了,对于人类来说,图像会比文字更加有利于用户理解.当操作系统不方便装屏幕记录软件,但又需要看已经登录用户在干什么的时候,用PowerShell的脚本来实现定时抓取图像的方式记录操作,查…
1.声明一个表示图像的变量,在OpenCV2中,这个变量是cv::Mat类型,该类是用于保存图像以及其他矩阵数据的数据结构.默认情况下它们的尺寸为0. cv::Mat  image;       //这句话将创建一个宽高都为0的图像: 通过调用cv::Mat 的size()方法可以获取该图像的尺寸,该方法的返回值是一个结构体,包含着宽度和高度: std::cout<<"size:"<<image.size().height<<","…
      首页 视界智尚 算法技术 每日技术 来打我呀 注册     OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的.如果有好的资源,也欢迎介绍和分享. 1:OpenCV学习笔记 作者:CSDN数量:55篇博文网址:http://blog.csdn.net/column/details/opencv-manual.html 2:部分OpenCV的函数解读和原理解读 作者:梦想腾飞数量:20篇博文网址:http:/…
我门要对某个目录下所有图像文件进行统一处理,如果图像的数量过多,那么手动地一张张处理就会显得有些麻烦.本文使用OpenCV和bash来完成我们指定的任务. 任务 将目录A下的所有统一格式的jpg图像变成统一尺寸的图像,输出到目录B中.A目录下图像的宽度和高度需要去掉最后一列.最后一行,并且使得输出图像的高度小于宽度. 技术 OpenCV读取图像:访问图像中的元素:OpenCV写图像到磁盘. BASH扫描每个输入图像:确定输出图像名称. OpenCV对图像进行处理 源代码如下: #include…
/** * @file main-opencv.cpp * @date July 2014 * @brief An exemplative main file for the use of ViBe and OpenCV */ //#include <opencv2\core\core.hpp> #include "vibe-background-sequential.h" using namespace cv; using namespace std; ; // 舍去面积…
今天我们来看一下如何访问图像的像素,以及如何改变图像的亮度与对比度. 在之前我们先来看一下图像矩阵数据的排列方式.我们以一个简单的矩阵来说明: 对单通道图像排列如下: 对于双通道图像排列如下: 那么对于三通道的RGB图像则为: 知道了排列方式之后我们来讨论一下访问图像像素常用的三种方式: 1.使用指针访问: 2.使用迭代器访问: 3.使用动态地址访问: 为了比较一下三种方式的效率,我们介绍两个函数来统计一下每种方式所需的时间. int64 getTickCount()函数:返回CPU自某个时间(…
我门要对某个文件夹下全部图像文件进行统一处理,假设图像的数量过多.那么手动地一张张处理就会显得有些麻烦.本文使用OpenCV和bash来完毕我们指定的任务. 任务 将文件夹A下的全部统一格式的jpg图像变成统一尺寸的图像,输出到文件夹B中.A文件夹下图像的宽度和高度须要去掉最后一列.最后一行,而且使得输出图像的高度小于宽度. 技术 OpenCV读取图像:訪问图像中的元素.OpenCV写图像到磁盘. BASH扫描每一个输入图像:确定输出图像名称. OpenCV对图像进行处理 源码例如以下: #in…
Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分: 1. 特征点提取和描述 2. 特征点配对,找到两幅图像中匹配点的位置 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像 4. 图像2拼接到映射图像上,完成拼接 过程1.2.3没啥好说的了,关键看看步骤4中的拼接部分.这里先采用比较简单一点的拼接方式来实现: 1. 找到图像1和图像2中最强的匹配点所在的位置 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标 3. 在…
原文:图像Stride求取 做这个日志也许你会觉得多余,但是,如果只给你了图像的流文件,和图像的Width,让你还原原始图像,那么你会发现一个问题,就是Stride未知的问题,这时就需要根据图像的Width获知这个Stride了. 对于一般图像(这里假设为24位RGB),当图像的Width不是4的倍数的时候,我们在内存中是要将其扩展为4的倍数的,也就是Stride的值是Width与4的最小公倍数,至于什么是Strde,为什么要这样做,大家又需要的话可以百度一下,这里就不再累赘了呵呵.这里给出一个…
< python PIL - 批量图像处理 - RGB图像生成灰度图像 > 直接用python自带的PIL图像库,将一个文件夹下所有jpg/png的RGB图像转换成灰度/黑白图像 from PIL import Image import os.path import glob def convertjpg(jpgfile,outdir): try: image_file = Image.open(jpgfile) # open colour image image_file = image_f…
我们经常会将某种尺寸的图像转化为其他尺寸的图像,如果需要放大或者缩小图像的尺寸,在 OpenCV 中可以使用如下两种方法: resize 函数,最直接的方法. pyrUp 和 pyrDown 函数,即图像金字塔相关的两个函数,对图像进行向上采样和向下采样的操作. pyrUp 和 pyrDown 其实和专门用于放大缩小图像尺寸的 resize 在功能上差不多,批着图像金字塔的皮,说白了还是对图像进行放大和缩小操作. 图像金字塔 一幅图像的金字塔是一系列以金字塔形状排列,分辨率逐渐降低且源于同一张原…
参考文献 目标 学习图像金字塔 学习函数cv2.pyrUp()和cv2.pyrDown() 原理 当我们需要将图像转换到另一个尺寸的时候, 有两种可能,一种是放大图像,另一种是缩小图像.尽管在Opencv几何变换中学到了resize()函数,不过使用图像金字塔来做图像缩放也是视觉运用中广泛应用的一项技术. 一般来说我们操作的图像是具有固定分辨率的,但是有些情况下,我们需要对同一图像的不同分辨率的子图像进行处理(尤其是在我们需要提取图像特征的时候).这个时候我们需要创建一组新的图像,这些图像是具有…
1.图像的透视变换 对于视角变换,我们需要一个 3x3 变换矩阵.在变换前后直线还是直线.要构建这个变换矩阵,你需要在输入图像上找 4 个点,以及他们在输出图像上对应的位置.这四个点中的任意三个都不能共线.这个变换矩阵可以有函数 cv2.getPerspectiveTransform() 构建.然后把这个矩阵传给函数cv2.warpPerspective. import cv2 import numpy as np img = cv2.imread('/home/wl/wyg.jpg',0)#以…