[BZOJ1025] [SCOI2009]游戏 解题报告】的更多相关文章

Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对应的数字.然后又在新的一排下面写上它们对应的数字.如此反复,直到序列再次变为1,2,3,……,N. 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6…
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个定理: 若Z可以作为几个数最小公倍数, 令 Z=p1^a1 * p2^a2 * ……  pi为质数 那么 当这几个数 的分别为 p1^a1  , p2^a2 …… 时, 这几个数的和最小,为Σ pi^ai 所以可以得出 如果将这个和最小化 之后 <=n ,那么 这个Z就能取到 (和小于n可以补1)…
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对应的数字.然后又在新的一排下面写上它们对应的数字.如此反复,直到序列再次变为1,2,3,……,N. 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6…
题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师在此吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目. 聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里.两种传球方法被视作不同的方法,当且仅当…
写在前面 此题网上存在大量题解,但本人太菜了,看了不下10篇均未看懂,只好自己冷静分析了.本文将严格详细地论述算法(避免一切意会和玄学),因此可能会比其它题解更加理论化一些,希望能对像我一样看了其它题解还云里雾里的人有帮助.最后,为了追求极致,以下将字符串长度\(m\)加强到了10000(原题是300),并给出了一个时间复杂度到达极限的做法. 以下数学推导较多,如有错误之处欢迎批评指正! 题目描述 给定\(n\)个串,每个串仅包含字符T和F,长度均为\(m\)且互不相同.现在有一个字符串发生器,…
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^m\frac{(a_i+a_j)^k}{nm} x^k \] 求出\(f\)点前\(t\)项 \[ \begin{aligned} nmf(x)&=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^m\sum_{l=0}^k\binom{k}{l}a_i^lb_j^{k-l}x…
[HEOI2016/TJOI2016]游戏 看起来就是个二分图匹配啊 最大化匹配是在最大化边数,那么一条边就代表选中一个坐标内的点 但是每一行不一定只会有一个匹配 于是把点拆开,按照'#'划分一下就好了 Code: #include <cstdio> #include <cstring> #include <cctype> template <class T> void read(T &x) { x=0;char c=getchar(); while…
P1129 [ZJOI2007]矩阵游戏 题目描述 小\(Q\)是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个\(N*N\)黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作: 行交换操作:选择矩阵的任意两行,交换这两行(即交换对应格子的颜色) 列交换操作:选择矩阵的任意两列,交换这两列(即交换对应格子的颜色) 游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑色. 对于某些关卡,小\…
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的那位下家成为新庄家,初始庄家为1,最后活下的人胜利,求每个人获胜概率. 约瑟夫类型的题目有个套路,以庄家为相对位置进行重新编号. 可以进行dp \(dp_{i,j}\)表示第\(i\)轮(倒着数的)距离庄家为\(j\)的人的获胜概率,这样就可以很简单的转移了 复杂度\(O(n^2m)\) Code:…
P1057 传球游戏 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目. 聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里.两种传球方法被视…