分词(Tokenization) - NLP学习(1) N-grams模型.停顿词(stopwords)和标准化处理 - NLP学习(2)   之前我们都了解了如何对文本进行处理:(1)如用NLTK文本处理库将文本的句子成分分成了N-Gram模型,与此同时引入了正则表达式去除一些多余的句子成分:(2)将停顿词去除:(3)一些通用的标准化处理,如大小写.提取词干等.在这一节我们将看看如何对文本中的单词进行统计,并以此来查看一个单词在特定文档中或者整个文本集中的重要性.统计单词的任务是为了给特定的词…
假设有一段文本:"I have a cat, his name is Huzihu. Huzihu is really cute and friendly. We are good friends." 那么怎么提取这段文本的特征呢? 一个简单的方法就是使用词袋模型(bag of words model).选定文本内一定的词放入词袋,统计词袋内所有词在文本中出现的次数(忽略语法和单词出现的顺序),将其用向量的形式表示出来. 词频统计可以用scikit-learn的CountVectori…
1. 词袋模型 (Bag of Words, BOW) 文本分析是机器学习算法的一个主要应用领域.然而,原始数据的这些符号序列不能直接提供给算法进行训练,因为大多数算法期望的是固定大小的数字特征向量,而不是可变长度的原始文本. 为了解决这个问题,scikit-learn提供了从文本内容中提取数字特征的常见方法,即: tokenizing: 标记字符串并为每个可能的token提供整数id,例如使用空白和标点作为token分隔符:(分词标记) counting: 统计每个文档中出现的token次数:…
分词(Tokenization) - NLP学习(1) N-grams模型.停顿词(stopwords)和标准化处理 - NLP学习(2) 文本向量化及词袋模型 - NLP学习(3-1) 在上一篇博文中,简单地阐述了如何将文本向量化及词袋模型的.文本向量化是为了将文本转换成机器学习算法可以直接处理的数字,直白点说就是这些转换后数字代表了文本的特征(此过程称之为特征提取或者特征编码),可以直接为机器学习模型所用.词袋模型(Bag-of-Words: BOW)则指的是统计单词在一个文本中出现的次数的…
函数说明: 1. re.sub(r'[^a-zA-Z0-9\s]', repl='', sting=string)  用于进行字符串的替换,这里我们用来去除标点符号 参数说明:r'[^a-zA-Z0-9\s]' 配对的模式,^表示起始位置,\s表示终止位置,[]表示取中间部分,这个的意思是找出除字符串大小写或者数字组成以外的东西,repl表示使用什么进行替换,这里使用'',即直接替换,string表示输入的字符串 2. stopwords = nltk.corpus.stopwords.word…
要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 在之前的开篇提到了text2vec,笔者将其定义为R语言文本分析"No.1",她是一个文本分析的生态系统.笔者在学习之后发现开发者简直牛!基于分享精神,将自学笔记记录出来.开篇内容参考: 重磅︱R+NLP:text2vec包--New 文本分析生态系统 No.1(一,简介) 文档可以以多种方式表达,单独词组.n-grams…
一.简介: 1.概念:glove是一种无监督的Word representation方法. Count-based模型,如GloVe,本质上是对共现矩阵进行降维.首先,构建一个词汇的共现矩阵,每一行是一个word,每一列是context.共现矩阵就是计算每个word在每个context出现的频率.由于context是多种词汇的组合,其维度非常大,我们希望像network embedding一样,在context的维度上降维,学习word的低维表示.这一过程可以视为共现矩阵的重构问题,即recon…
实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配; 基于理解的句法和语义分析消歧: 基于统计的互信息/CRF方法: WordEmbedding + Bi-LSTM+CRF方法 去停用词:维护一个停用词表 (2)特征提取 特征选择的基本思路是根据某个评价指标独立的对原始特征项(词项)进行评分排序,从中选择得分最高的…
一.文本表示 文本表示的意思是把字词处理成向量或矩阵,以便计算机能进行处理.文本表示是自然语言处理的开始环节. 文本表示按照细粒度划分,一般可分为字级别.词语级别和句子级别的文本表示.字级别(char level)的如把“邓紫棋实在太可爱了,我想养一只”这句话拆成一个个的字:{邓,紫,棋,实,在,太,可,爱,了,我,想,养,一,只},然后把每个字用一个向量表示,那么这句话就转化为了由14个向量组成的矩阵. 文本表示分为离散表示和分布式表示.离散表示的代表就是词袋模型,one-hot(也叫独热编码…
函数说明: 1 CountVectorizer(ngram_range=(2, 2)) 进行字符串的前后组合,构造出新的词袋标签 参数说明:ngram_range=(2, 2) 表示选用2个词进行前后的组合,构成新的标签值 Ngram模型表示的是,对于词频而言,只考虑一个词,这里我们在CountVectorizer统计词频时,传入ngram_range=(2, 2)来构造新的词向量的组合 好比一句话'I like you' 如果ngram_range = (2, 2)表示只选取前后的两个词构造词…