(缺少一些公式的图或者效果图,评论区有惊喜) (个人学习这篇论文时进行的翻译[谷歌翻译,你懂的],如有侵权等,请告知) StarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning 摘要 近年来,实时策略游戏一直是游戏人工智能的重要领域.本文提出了一个强化学习和课程转换学习方法来控制星际争霸微操作中的多个单位.我们定义了一个有效的状态表示,它可以打破游戏环境中大型状态空间造成的复杂性.…
(缺少一些公式的图或者效果图,评论区有惊喜) (个人学习这篇论文时进行的翻译[谷歌翻译,你懂的],如有侵权等,请告知) Multiagent Bidirectionally-Coordinated Nets Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games 多主体双向协调网络 在学习玩星际争霸游戏时出现人类协调 摘要 现实世界的人工智能(AI)应用通常需要多个agent协同工作.人工智…
论文地址:基于通用传递函数GSC和后置滤波的语音增强 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12232341.html 摘要 在语音增强应用中,麦克风阵列后置滤波可进一步减少波束形成器输出处的噪声成分.在麦克风阵列结构中,最近提出的通用传递函数广义旁瓣消除器(TF-GSC)在定向噪声场中显示出令人印象深刻的降噪能力,同时仍保持低语音失真.但是,在扩散噪声场中,可获得的降噪效果不明显.当噪声信号不稳定时,性能甚至会进一步下降. 在本文中…
资源:http://www.cse.ust.hk/TL/ 简介: 一个例子: 关于照片的情感分析. 源:比如你之前已经搜集了大量N种类型物品的图片进行了大量的人工标记(label),耗费了巨大的人力物力,构建了源情感分类器(即输入一张照片,可以分析出照片的情感).注:这里的情感不是指人物的情感,而是指照片中传达出来的情感,比如这张照片是积极的还是消极的. 目标:因为不同类型的物品,他们在源数据集中的分布也是不同的,所以为了维护一个很好的分类器性能,经常需要增加新的物品.传统的方式是搜集大量N+1…
迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层(一般是最后分类器),将剩下的ConvNet作为应用于新数据集的固定不变的特征提取器,输出特征称为CNN codes,如果在预训练网络上是经过ReLUd,那这些codes也要经过ReLUd(important for performance):提取出所有CNN codes之后,再基于新数据集训练一个…
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   This is the first in a series of posts looking at the ‘top 100 awesome deep learning papers.’ Deviating from the normal one-paper-per-day format, I’ll ta…
https://github.com/jindongwang/transferlearning ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/torrey.handbook09.pdf https://arxiv.org/pdf/1411.1792.pdf https://cs231n.github.io/transfer-learning/ CNN Features off-the-shelf: an Astounding Basel…
by Jason Brownlee on December 20, 2017 in Better Deep Learning Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. It is a popular approach in deep learning w…
Faster R-CNN论文翻译   Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什么想法?就是把那个一直明明应该换掉却一直被几位大神挤牙膏般地拖着不换的选择性搜索算法,即区域推荐算法.在Fast R-CNN的基础上将区域推荐换成了神经网络,而且这个神经网络和Fast R-CNN的卷积网络一起复用,大大缩短了计算时间.同时mAP又上了一个台阶,我早就说过了,他们一定是在挤牙膏. F…
R-CNN论文翻译 Rich feature hierarchies for accurate object detection and semantic segmentation 用于精确物体定位和语义分割的丰富特征层次结构 2017-11-29 摘要         过去几年,在权威数据集PASCAL上,物体检测的效果已经达到一个稳定水平.效果最好的方法是融合了多种图像低维特征和高维上下文环境的复杂结合系统.在这篇论文里,我们提出了一种简单并且可扩展的检测算法,可以将mAP在VOC2012最…