全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍 俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节 透彻讲解Spark原理和架构,以及部署模式.调度框架.存储管理及应用监控等重要模块 Spark生态圈深度检阅:SQL处理Shark和Spark SQL.流式处理Spark Streaming.图计算Graphx及内存文件系统Tachyon 内容简介 书籍计算机书籍 <Spark大数据处理技术>以Spark 0.9版本为基础进行编写,是一本全面介绍Spark及S…
大数据可以说是从搜索引擎诞生之处就有了,我们熟悉的搜索引擎,如百度搜索引擎.360搜索引擎等可以说是大数据技处理技术的最早的也是比较基础的一种应用.大概在2015年大数据都还不是非常火爆,2015年可以说是大数据的一个分水岭.随着互联网技术的快速发展,大数据也随之迎来它的发展高峰期. 整个大数据处理技术的核心基础hadoop.mapreduce.nosql系统,而这三个系统是建立在谷歌提出的大表.分布式文件系统和分布式计算的三大技术构架上,以此来解决海量数据处理的问题.虽然说大数据处理技术最早兴…
几个关键性的概念 云计算:是指利用大量计算节点构成的可动态调整的虚拟化计算资源.通过并行化和分布式计算技术,实现业务质量可控的大数据处理的计算技术. NameNode:是HDFS系统中的管理者.它负责管理文件系统的命名空间.维护文件系统的文件树以及全部的文件和文件夹的元数据.这些信息存储在NameNode维护的两个本地磁盘文件:命名空间镜像文件和编辑日志文件. 同一时候,NameNode中还保存了每一个文件与数据块所在的DataNode的相应关系,这些信息被用于其它功能组件查找所需文件资源的数据…
为什么不呢?我们有了RPC/RMI和MAP,为什么不能在windows环境下处理大数据呢?windows是迄今为止最普及的操作系统,据市调公司NetMarketShare最新(2019年5月)统计数据,在桌面操作系统方面,目前Windows 10的市场占有率已达45.73%.而Windows 7的市场占有率为35.44%.排在第三位的是Windows 8.1,市场份额为3.97%.这三个版本的windows市场占有率之和为:85.14%.可以说windows占据了绝大多数用户的心.这与windo…
16日上午9点,2016云栖大会“开源大数据技术专场” (全天)在阿里云技术专家封神的主持下开启.通过封神了解到,在上午的专场中,阿里云高级技术专家无谓.阿里云技术专家封神.阿里巴巴中间件技术部高级技术专家天梧.阿里巴巴中间件技术部资深技术专家纪君祥将给大家带来Hadoop.Spark.HBase.JStorm Turbo等内容. 无谓:Hadoop过去现在未来,从阿里云梯到E-MapReduce 阿里云高级技术专家 无谓 从开辟大数据先河至现在,风雨十年,Hadoop已成为企业的通用大数据框架…
第1章 HBase简介 1.1 什么是HBase HBase的原型是Google的BigTable论文,受到了该论文思想的启发,目前作为Hadoop的子项目来开发维护,用于支持结构化的数据存储. 官方网站:http://hbase.apache.org -- 2006年Google发表BigTable白皮书 -- 2006年开始开发HBase -- 2008年北京成功开奥运会,程序员默默地将HBase弄成了Hadoop的子项目 -- 2010年HBase成为Apache顶级项目 -- 现在很多公…
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,已经BDAS生态系统的相关技术. 内容简介 书籍计算机书籍 这是一本依据最新技术版本,系统.全面.详细讲解Spark…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…