首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
P2522 [HAOI2011]Problem b (莫比乌斯反演)
】的更多相关文章
P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j=c}^dgcd(i,j)=k\) 像二维前缀和一样容斥一下,输出就完了. 根据luogu某大佬的说法 开longlong的话会TLE.. 代码 //莫比乌斯反演 #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10…
洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k 输出格式: 共n行,每行一个整数表示满足要求的数对(x,y)的个数 输入输出样例 输入样例#1: 复制 2 2 5 1 5 1 1 5 1 5 2 输出样例#1: 复制 14 3 说明 100%的数据满足:1≤n≤50000,1≤a≤b≤500…
Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演
设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$ 则$f(n)$ $=\sum_{n|d}\mu(\frac{n}{d})F(d)$ $=\sum_{n|d}\mu(\frac{n}{d})\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor$…
BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1…
BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][Status] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一…
BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的,我们通常采用莫比乌斯反演 但是,时间复杂度是O(n*(n/k))的,当复杂度很坏的时候,当k=1时,退化到O(n^2),超时 然后进行分块优化,时间复杂度是O(n*sqrt(n)) #include<cstdio> #include<cstring> #include<queue…
BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先是把下界作为1.可以化为求 \[\sum_{i=1}^{\lfloor\frac{N}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{M}{k}\rfloor}[(i,j)=1]\] 说明:大概就我不能直接看出来了.. 首先要求\([1,N]\)中有多少\(i,i|k\),再…
[POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演
1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ $$[gcd(i, j) == d] = [gcd(\lfloor{\frac{i}{d}}\rfloor,\lfloor{\frac{j}{d}}\rfloor) == 1]$$ 所以原式 $$\Rightarrow \quad \sum_{i = 1}^{\lfloor{\frac{n}{d}…
[BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x,y中都有n这个因子就好了,也就是[a/n]*[b/n]个数对(向下取整) 然后设题中所要求的为f[n],很容易得知,F[n]=∑f[d](n|d) 莫比乌斯反演可以得到f[n]=∑μ(d/n)F[d](n|d) 这样是O(n),然而数据范围5*10^4显然不能通过 f[n]=∑μ(d/n)[a/d][b/d]…