机器学习基石 1 The Learning Problem Introduction 什么是机器学习 机器学习是计算机通过数据和计算获得一定技巧的过程. 为什么需要机器学习 1 人无法获取数据或者数据信息量特别大: 2 人的处理满足不了需求. 使用机器学习的三个关键要素 1 存在一个模式可以让我们对它进行改进: 2 规则不容易定义: 3 需要有数据. Components of Machine Learning Machine Learning and Other Fields ML VS DM…
1  定义 机器学习 (Machine Learning):improving some performance measure with experience computed from data 2  应用举例 ML:an alternative route to build complicated systems 2.1  股票预测   2.2  图像识别 2.3  衣食住行    2.4  关键要素 在决定某些应用场景,是否适合使用机器学习时,常考虑以下三个要素: 1) exists s…
机器学习的整个过程:根据模型H,使用演算法A,在训练样本D上进行训练,得到最好的h,其对应的g就是我们最后需要的机器学习的模型函数,一般g接近于目标函数f.本节课将继续深入探讨机器学习问题,介绍感知机Perceptron模型,并推导课程的第一个机器学习算法:Perceptron Learning Algorithm(PLA). 一.Perceptron Hypothesis Set 某银行要根据用户的年龄.性别.年收入等情况来判断是否给该用户发信用卡.现在有训练样本D,即之前用户的信息和是否发了…
什么时候适合用机器学习算法? 1.存在某种规则/模式,能够使性能提升,比如准确率: 2.这种规则难以程序化定义,人难以给出准确定义: 3.存在能够反映这种规则的资料. 所以,机器学习就是设计算法A,从包含许多假设的假设集合H里,根据所给的数据集D,选出和实际规则f最为相似的假设g. 注:g和f相似度的衡量是基于所有数据,不仅仅是D. Learning Model = A + H, A确定后,H形式也给出, W的变化构成不同的属于H的h.…
原文地址:https://www.jianshu.com/p/bd7cb6c78e5e 什么时候适合用机器学习算法? 存在某种规则/模式,能够使性能提升,比如准确率: 这种规则难以程序化定义,人难以给出准确定义: 存在能够反映这种规则的资料. 所以,机器学习就是设计算法\(A\),从包含许多假设的假设集合\(H\)里,根据所给的数据集\(D\),选出和实际规则\(f\)最为相似的假设\(g\). \(g\)和\(f\)相似度的衡量是基于所有数据,不仅仅是\(D\). \(Learning \ M…
什么时候适合用机器学习算法? 1.存在某种规则/模式,能够使性能提升,比如准确率: 2.这种规则难以程序化定义,人难以给出准确定义: 3.存在能够反映这种规则的资料. 所以,机器学习就是设计算法A,从包含许多假设的假设集合H里,根据所给的数据集D,选出和实际规则f最为相似的假设g. 注:g和f相似度的衡量是基于所有数据,不仅仅是D. Learning Model = A + H, A确定后,H形式也给出, W的变化构成不同的属于H的h.…
Perceptron Learning Algorithm 感知器算法, 本质是二元线性分类算法,即用一条线/一个面/一个超平面将1,2维/3维/4维及以上数据集根据标签的不同一分为二. 算法确定后,根据W取值的不同形成不同的h,构成假设集合H. 如2维感知器算法,根据w0,w1,w2的不同取值,构成了不同的h,这些h最终构成H.注意为了方便表示,将阈值的相反数记为w0,对应的数据点增加一维x0,恒为1. 而算法就是根据给定数据集D从H中选出与目标模式f最为相似的g. 更新规则/学习过程, 遍历…
由于前面分享的几篇博客已经把其他题的解决方法给出了链接,而这道题并没有,于是这里分享一下: 原题: 这题说白了就是求一个二维平面上的数据用决策树来分开,这就是说平面上的点只能画横竖两个线就要把所有的点SATTER掉,先给出四个点的情况,如下: 第一种分割方式: 第二种分割方式 第三种分割方式   为第一种的  上下导致. 第四种分割方式   为第二种的  上下导致. 第 5 6 7 8 分别为  第1 2 3 4 种中正负点的互换, 以此方式,我们可以画出  16种,这里不全部给出了. 由此可以…
这里写的是  习题1 中的    18 , 19, 20 题的解答. Packet 方法,我这里是这样认为的,它所指的贪心算法是不管权重更新是否会对train data有改进都进行修正,因为这里面没有区分是否可以线性分割,如果线性可分那么每次的更新都注定是要使train data的分割效果得到提升,但是如果不是线性可分的,那么并不是每次的权重修正都可以使效果得到提升. 这时候的贪心算法是指不考虑每次权重的修正是否可以使优化效果得到提升,有错误的分割则进行一次权重修正.这种情况下我们不能保证一定会…
博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) Andrew Ng的Machine Learning比較简单,已经看完.林田轩的机器学习基石很多其它的是从概率论的角度来介绍机器学习,之前的视频已经听了大半.但好多都是模棱两可. 如今从头開始,认真整理笔记.笔记的结构遵从课程视频的结构. 以下是机器学习基石的第一讲:the learning problem Course Introduction 机器学习是一门理论和实践相结合的课…