首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
最短路经算法简介(Dijkstra算法,A*算法,D*算法)
】的更多相关文章
最短路经算法简介(Dijkstra算法,A*算法,D*算法)
据 Drew 所知最短路经算法现在重要的应用有计算机网络路由算法,机器人探路,交通路线导航,人工智能,游戏设计等等.美国火星探测器核心的寻路算法就是采用的D*(D Star)算法. 最短路经计算分静态最短路计算和动态最短路计算. 静态路径最短路径算法是外界环境不变,计算最短路径.主要有Dijkstra算法,A*(A Star)算法. 动态路径最短路是外界环境不断发生变化,即不能计算预测的情况下计算最短路.如在游戏中敌人或障碍物不断移动的情况下.典型的有D*算法 Dijkstra算法求最短路径:…
蚁群算法简介(part 1:蚁群算法之绪论)
群算法是Marco Dorigo在1992年提出的一种优化算法,该算法受到蚂蚁搜索食物时对路径的选择策略的启示.蚁群算法作为群体智能算法的一种利用分布式的种群搜索策略来寻找目标函数的最优解.蚁群算法与其他优化算法相比较的一个明显优势是蚁群算法能够适应动态变化的环境,这个特点使它特别适合解决像网络路由这类解空间频繁发生变化的优化问题. 为了更好的理解蚁群算法,我们首先需要了解在自然界中蚂蚁是如何寻找食物的.蚂蚁在寻找食物时会遵循一些简单的基本法则.这些法则的核心是利用一种叫作信息素的物质,信息素是…
算法-迪杰斯特拉算法(dijkstra)-最短路径
迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想: 设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中…
网格最短路径算法(Dijkstra & Fast Marching)
Dijkstra算法是计算图中节点之间最短路径的经典算法,网上关于Dijkstra算法原理介绍比较多,这里不再多讲.值得一提的是,当图中节点之间的权重都为1时,Dijkstra算法就变化为一般意义上的广度优先搜索算法(Breadth-first search algorithm). Dijkstra算法流程如下: Dijkstra算法流程 在介绍Fast marching算法之前先提下Eikonal方程,Eikonal方程属于非线性偏微分方程,可以认为是一种近似波动方程,它的形式如下: Ei…
《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径
自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径. 主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解, 但由于它遍历计算的节点很多,所以效率低. Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,比如数据结构.图论.运筹学等. 首先,大家需要明确…
网格最短路径算法(Dijkstra & Fast Marching)(转)
Dijkstra算法是计算图中节点之间最短路径的经典算法,网上关于Dijkstra算法原理介绍比较多,这里不再多讲.值得一提的是,当图中节点之间的权重都为1时,Dijkstra算法就变化为一般意义上的广度优先搜索算法(Breadth-first search algorithm). Dijkstra算法流程如下: Dijkstra算法流程 在介绍Fast marching算法之前先提下Eikonal方程,Eikonal方程属于非线性偏微分方程,可以认为是一种近似波动方程,它的形式如下: Ei…
数据结构与算法系列研究七——图、prim算法、dijkstra算法
图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph)表示的是顶点之间的邻接关系. (1) 无向图(undirect graph) E中的每条边不带方向,称为无向图.(2) 有向图(direct graph) E中的每条边具有方向,称为有向图.(3) 混合图 E中的一些边不带方向, 另一些边带有方向.(4) 图的阶 指…
<算法图解>读书笔记:第1章 算法简介
阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(log_2n\)步,而简单查找最多需要n步 仅当列表是有序的时候,二分查找才管用 python猜数字代码(二分查找) def binarySeach (list,item): low = 0 high = len(list) - 1 while low <= high: mid = (low + high…
【算法】狄克斯特拉算法(Dijkstra’s algorithm)
狄克斯特拉算法(Dijkstra’s algorithm) 找出最快的路径使用算法——狄克斯特拉算法(Dijkstra’s algorithm). 使用狄克斯特拉算法 步骤 (1) 找出最便宜的节点,即可在最短时间内前往的节点. (2) 对于该节点的邻居,检查是否有前往它们的更短路径,如果有,就更新其开销. (3) 重复这个过程,直到对图中的每个节点都这样做了. (4) 计算最终路径. 术语 权重(weight): 狄克斯特拉算法用于每条边都有关联数字的图,这些数字称为权重(weight). 加…
Prim算法、Kruskal算法、Dijkstra算法
无向加权图 1.生成树(minimum spanning trees) 图的生成树是它一棵含有所有顶点的无环联通子图 最小生成树:生成树中权值和最小的(所有边的权值之和) Prim算法.Kruskal算法就是实现最小生成树的算法 应用前提:权值各不相同的连通子图(权值相同,最小生成树不唯一) 2.Prim算法 算法描述: Prim算法是一种"加点法": 算法步骤: 1.定义图中所有顶点集合\(V\),从顶点\(s\)开始:初始化生成树顶点集合\(u={s}\),\(v=V-u\) 2.…
最小路径算法(Dijkstra算法和Floyd算法)
1.单源点的最短路径问题:给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径. 我们用一个例子来具体说明迪杰斯特拉算法的流程. 定义源点为 0,dist[i]为源点 0 到顶点 i 的最短路径.其过程描述如下: 步骤 dist[1] dist[2] dist[3] dist[4] 已找到的集合 第 1 步 8 1 2 +∞ {2} 第 2 步 8 × 2 4 {2, 3} 第 3 步 5 × × 4 {2, 3, 4} 第 4 步 5 × × × {2, 3, 4, 1} 第 5 步 ×…
图论——最短路:Floyd,Dijkstra,Bellman-Ford,SPFA算法及最小环问题
一.Floyd算法 用于计算任意两个节点之间的最短路径. 参考了five20的博客 Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点到B,所以,我们假设dist(AB)为节点A到节点B的最短路径的距离,对于每一个节点K,我们检查dist(AK) + dist(KB) < dist(AB)是否成立,如果成立,证明从A到K再到B的路径比A直接到B的路径短,我们便设置 dist(AB) = dist(AK) + dist(KB),…
图论——迪杰斯特拉算法(Dijkstra)实现,leetcode
迪杰斯特拉算法(Dijkstra):求一点到另外一点的最短距离 两种实现方法: 邻接矩阵,时间复杂度O(n^2) 邻接表+优先队列,时间复杂度O(mlogn)(适用于稀疏图) (n:图的节点数,m:图的边数) (参考 https://leetcode-cn.com/problems/path-with-maximum-probability/solution/gai-lu-zui-da-de-lu-jing-by-leetcode-solution/) leetcode经典例题: (1) 743…
图中最短路径算法(Dijkstra算法)(转)
1.Dijkstra 1) 适用条件&范围: a) 单源最短路径(从源点s到其它所有顶点v); b) 有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图) c) 所有边权非负(任取(i,j)∈E都有Wij≥0); 2) 算法描述: 在带权图中最常遇到的问题就是,寻找两点间的最短路径问题. 解决最短路径问题最著名的算法是Djikstra算法.这个算法的实现基于图的邻接矩阵表示法,它不仅能够找到任意两点的最短路径,还可以找到某个指定点到其他…
webrtc 的回声抵消(aec、aecm)算法简介(转)
webrtc 的回声抵消(aec.aecm)算法简介 webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) 3.NLP(非线性滤波) 4.CNG(舒适噪声产生),一般经典aec算法还应包括双端检测(DT).考虑到webrtc使用的NLMS.NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如视频会议中的算法)比较有特…
最短路径算法(Dijkstra算法、Floyd-Warshall算法)
最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 确定终点的最短路径问题:即已知终结结点,求最短路径的问题.在无向图中,该问题与确定起点的问题完全等同:在有向图中,该问题等同于把所有路径方向反转的确定起点的问题. 确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径. 全局最短路径问题:求图中所有的最短路径.Floyd-Warshall算法. dijkstra算法思想: 开始时,S={u},T=V-{u}; 对…
AES算法简介
AES算法简介 一. AES的结构 1.总体结构 明文分组的长度为128位即16字节,密钥长度可以为16,24或者32字节(128,192,256位).根据密钥的长度,算法被称为AES-128,AES-192或者AE-256. 2.明文密钥组织方式 3.一些相关的的术语定义和表示 • 状态(State):密码运算的中间结果称为状态. • State的表示:状态用以字节为基本构成元素的矩阵阵列来表示,该阵列有4行,列数记为Nb. Nb=分组长度(bits)÷ 32.Nb可以取的值为4,对应的分组长…
关于狄克斯特拉算法(dijkstra)总结
1,2,4是四个定点其他的是距离,从2到4最直接的就是2-4,但是不是最近的,需要舒展一下2-1-4,这样只有8.所以才是最短的.这个过程就是狄克斯特拉算法.下面进入正题: 我们这里定义图的编号为: 1 2 3 4 5 6 7 8 9 图1:初始化的图,其中包含边的权值(耗时).(这里图是有向图). 图2:确定起点,然后向能直接走到的点走一下,记录此时的估计值:2 6 9.. 图3:找到距离起点最近的点,是正东边的那个点,这时候我们耗费权值为2.然后我们进行松弛操作,从起点到其东南方的点直接…
排列熵算法简介及c#实现
一. 排列熵算法简介: 排列熵算法(Permutation Entroy)为度量时间序列复杂性的一种方法,算法描述如下: 设一维时间序列: 采用相空间重构延迟坐标法对X中任一元素x(i)进行相空间重构,对每个采样点取其连续的m个样点,得到点x(i)的m维空间的重构向量: 则序列X的相空间矩阵为: 其中m和l分别为重构维数和延迟时间: 对x(i)的重构向量Xi各元素进行升序排列,得到: 这样得到的排列方式为 其为全排列m!中的一种,对X序列各种排列情况出现次数进行统计,计算各种排列情况出现的相…
LARS 最小角回归算法简介
最近开始看Elements of Statistical Learning, 今天的内容是线性模型(第三章..这本书东西非常多,不知道何年何月才能读完了),主要是在看变量选择.感觉变量选择这一块领域非常有意思,而大三那门回归分析只是学了一些皮毛而已.过两天有空,记一些ESL这本书里讲的各种变量选择方法在这里. 先讲一下今天看到的新方法,所谓的LARS(Least Angle Regression). LARS是大神Efron他们搞出来做变量选择的一套算法,有点像Forward Stepwise(…
AI - 机器学习常见算法简介(Common Algorithms)
机器学习常见算法简介 - 原文链接:http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/ 应该使用哪种机器学习算法? 很大程度上依赖于可用数据的性质和数量以及每一个特定用例中你的训练目标. 不要使用最复杂的算法,除非其结果值得付出昂贵的开销和资源. 这里给出了一些最常见的算法,按使用简单程度排序. 1. 决策树(DT,Decision Trees) 在进行逐步应答过程中,典型的决策树分析会…
【最短路算法】Dijkstra+heap和SPFA的区别
单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algorithm)算法.这两个算法写起来非常相似.下面就从他们的算法思路.写法和适用场景上进行对比分析.如果对最短路算法不太了解,可先看一下相关ppt:最短路 为了解释得简单点,以及让对比更加明显,我就省略了部分细节. 我们先看优化前的: \(O(V^2 + E)\)的Dijkstra n-1次循环 -->找…
STL所有算法简介 (转) http://www.cnblogs.com/yuehui/archive/2012/06/19/2554300.html
STL所有算法简介 STL中的所有算法(70个) 参考自:http://www.cppblog.com/mzty/archive/2007/03/14/19819.htmlhttp://hi.baidu.com/dinglinbin/blog/item/887e7c30c12e429ba9018e30.html STL算法部分主要由头文件<algorithm>,<numeric>,<functional>组成.要使用 STL中的算法函数必须包含头文件<algori…
PageRank 算法简介
有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank-introduction.html 另一篇<PageRank简介-串讲Q&A.docx> http://docs.babel.baidu.com/doc/ee14bd65-ba71-4ebb-945b-cf279717233b PageRank对网页排名的算法,曾是Google发家致富的…
Gradient Boosting算法简介
最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包 scikit-learn 中的GradientBoostingRegressor完成 因此就学习了下Gradient Boosting算法,在这里分享下我的理解 Boosting 算法简介 Boosting算法,我理解的就是两个思想: 1)“三个臭皮匠顶个诸葛亮”,一堆弱分类器的组合就可以成为一个强分类器: 2)“知错能改,善莫大焉”,不断地在错误中学习,迭代来降低…
图论算法——最短路径Dijkstra,Floyd,Bellman Ford
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所有边进行松弛,一共对所有边松弛n-1次,判断是否有负权 Floyd 无负权 依次对所有点(的所有边进行松弛),直到完成对所有点的操作…
拓展 - Webrtc 的回声抵消(aec、aecm)算法简介
webrtc 的回声抵消(aec.aecm)算法简介 原文链接:丢失.不好意思 webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) 3.NLP(非线性滤波) 4.CNG(舒适噪声产生),一般经典aec算法还应包括双端检测(DT).考虑到webrtc使用的NLMS.NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如…
前端必学---JavaScript数据结构与算法---简介
前端必学---JavaScript数据结构与算法---简介 1. 数据结构: 数据结构是相互之间存在一种或者多种特定关系的数据元素的集合.---<大话数据结构> 1.1 数据结构的分类 1. 逻辑结构 线性结构 线性结构中的数据元素之间是一对一的关系. 集合结构 集合结构中的数据元素除了同属于一个集合外,它们之间没有其他关系. 树形结构 树形结构中的数据元素之间存在一对多的层次关系. 图形结构 图形结构的数据元素是多对多的关系. 2. 物理结构 顺序存储结构 链接存储结构 数据结构要学习总结的…
【异常检测】孤立森林(Isolation Forest)算法简介
简介 工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记噪声数据,而数据的质量决定了最终模型性能的好坏.如果进行人工二次标记,成本会很高,我们希望能使用一种无监督算法帮我们做这件事,异常检测算法可以在一定程度上解决这个问题. 异常检测分为 离群点检测(outlier detection) 以及 奇异值检测(novelty detection) 两种. 离群点检测:适用于训练数据中包含异常值的情况,例如上述所提及的情况.离群点检测…
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
一.名称 动态规划法应用 二.目的 1.贪婪技术的基本思想: 2.学会运用贪婪技术解决实际设计应用中碰到的问题. 三.要求 1.实现基于贪婪技术思想的Prim算法: 2.实现基于贪婪技术思想的Dijkstra算法. 四.内容 1.实现基于贪婪技术思想的Prim算法 1.1.Prim算法的伪代码描述 算法 Prim(G) //构造最小生成树的Prim算法 //输入:加权连通图G<V,E> //输出:E(T),组成G的最小生成树的边的集合 V(t)←{V0} //可以用任意顶点来初始化树的顶点集合…