luogu P3722 [AH2017/HNOI2017]影魔】的更多相关文章

传送门 我太弱了,只会乱搞,正解是不可能正解的,这辈子不可能写正解的,太蠢了又想不出什么东西,就是乱搞这种东西,才能维持得了做题这样子 考虑将询问离线,按右端点排序,并且预处理出每个位置往前面第一个大于这个数的位置,记为\(fa_i\) 如果加入一个右端点\(i\),那么可以加上贡献的左端点有以下三类 在区间\([fa_i,i)\)中,从\(i-1\)开始一直跳\(fa\),能到达的位置加上p1 在区间\([fa_i,i)\)中,从\(i-1\)开始一直跳\(fa\),不能到达的位置加上p2 在…
题意 题目链接 Sol 题解好神仙啊qwq. 一般看到这种考虑最大值的贡献的题目不难想到单调数据结构 对于本题而言,我们可以预处理出每个位置左边第一个比他大的位置\(l_i\)以及右边第一个比他大的位置\(r_i\) 那么\((l_i, r_i)\)会产生\(p1\)的贡献 \([l_i + 1, i - 1]\)和\(r_i\)会产生\(p2\)的贡献 \([i + 1, r_i - 1]\)和\(l_i\)会产生\(p2\)的贡献 这样我们直接上区间加线段树就能统计到每个点的贡献了. 然后统…
题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l,r]\) 产生 \(p_2\) 的贡献当且仅当 \(a_l\) 为区间 \([l,r]\) 的最大值且 \(a_r\) 不是区间 \([l,r]\) 的次大值,或者 \(a_r\) 为区间 \([l,r]\) 的最大值且 \(a_l\) 不是区间 \([l,r]\) 的次大值. 我们考虑转化贡献体…
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们可以假设我们旋转\(B\)串,上下要加上的亮度差为\(p\),可以直接拍出一个最暴力的柿子: 设\(f(x)\)表示\(B\)串以\(x\)为开头的差异值,有: \(f(x)=\sum_{i=0}^{x-1}(B[i]-A[i+n-x]+p)^2+\sum_{i=x}^{n-1}(B[i]-A[i-…
嘟嘟嘟 这题真的挺神的,我是真没想出来. 洛谷的第一篇题解说的非常妙,实在是佩服. 就是我们首先预处理出对于第\(i\)个数,在\(i\)左边比第一个比\(i\)大的数\(l_i\),在\(i\)右边第一个比\(i\)大的数\(r_i\). 这个可以用单调栈扫两边分别求出来. 然后我们考虑位于\([l_i, r_i]\)中的所有数产生的贡献: 1.\(l_i\)和\(r_i\)单独产生\(p1\)的贡献. 2.位于\([l_i + 1, i - 1]\)的数都和\(r_i\)产生\(p2\)的贡…
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式子无法化简qwq 把A和b的抛硬币情况连在一起,记成一个01串,那么如果某个串代表B获胜,那么这个串的反串就能代表A获胜 如果\(a=b\),那么答案还要减去平局情况,即\[\frac{2^{a+b}-\binom{a+b}{a}}{2}\] 如果\(a>b\),那么有种特殊情况是代表A获胜的某个串…
传送门 \(Spaly:\)??? 考虑在暴力模拟的基础上优化 如果要插入一个数,那么根据二叉查找树的性质,这个点一定插在他的前驱的右子树或者是后继的左子树,可以利用set维护当前树里面的数,方便查找前驱后继.不过具体要插到前驱处还是后继处呢?可以把前驱后继在树上的lca找出来,看一下新点如果小于lca的值,往前驱那边走;反之类似 然后后面操作都类似,把树中最值旋到根,可能会删除.通过手玩发现如果要旋最小值,那么最终树中,这个点的父亲的左儿子为这个点的右儿子,并且这个点的右儿子是原来的根,其他的…
BZOJ 4827 $$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + 2c * x_i - 2c * y_i) = \sum_{i = 1}^{n}x_i^2 + \sum_{i = 1}^{n}y_i^2 + nc^2 + (2\sum_{i = 1}^{n}(x_i -y_i))c - 2 * \sum_{i = 1}^{n}x_iy_i$$ 发现第一项和第二项是…
设\(l[i]\)为i左边第一个比i大的数的下标.\(r[i]\)为i右边第一个比i大的数的下标. 我们把\(p1,p2\)分开考虑. 当产生贡献为\(p1\)时\(i\)和\(j\)一定满足,分别为\(l[x],r[x]\)枚举每一个值为\(i\),\(j\)之间最大值可证. 党产生贡献为\(p2\)时\(i\)和\(j\)满足分别为\(l[x],[x+1,r[x]-1]\)或\([l[x]+1,x-1],r[x]\),此时\(a[x]\)为\(i\),\(j\)之间最大值,\(i\),\(j…
传送门 解题思路 首先我们设变化量为\(r\),那么最终的答案就可以写成 : \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2) \] \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i)^2-2*r*\sum\limits_{i=1}^{n}(a_i-b_i)+n*r^2) \] 继续化简: \[ ans=min(\sum\limits_{i=1}^n a_i^2+\sum\limits_{i=1}^n b_i^2-2*\sum\…
#include<bits/stdc++.h> #define maxn 200010 using namespace std; int a[maxn],st[maxn][2],top,L[maxn],R[maxn],root[2][maxn]; struct node{int x,y;}A[maxn]; struct Node{int x,yl,yr;}B[maxn<<1]; long long num; bool cmp1(node p,node q){return p.x&l…
4826: [Hnoi2017]影魔 题意:一个排列,点对\((i,j)\),\(p=max(i+1,j-1)\),若\(p<a_i,a_j\)贡献p1,若\(p\)在\(a_1,a_2\)之间贡献p2. 多组询问一个区间的贡献和. 感觉和去年的题挺像的...然后\(O(n\sqrt{n}logn)\)莫队被卡成暴力...那个log还是主席树log... 并且调试时间比正解还长,不能更弱了 一个点对只有唯一的最大值\(p\) 可以按照\(p\)来分类统计 单调栈预处理\(l_i, r_i\)第一…
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] + c) ^ 2 的最小值 ans[k] = ∑ ( x[i], y[(i + k) % n + 1] ) ^ 2 拆项 发现ans[k] = ∑ x[i] ^ 2 + ∑ y[i] ^ 2  + n * c ^ 2 + 2 * ∑ x[i] * c - 2 * ∑ y[i] * c - 2 *…
4826: [Hnoi2017]影魔 https://lydsy.com/JudgeOnline/problem.php?id=4826 分析: 莫队+单调栈+st表. 考虑如何O(1)加入一个点,删除一个点,类似bzoj4540.然后就可以莫队了.复杂度$O(n\sqrt n)$ 代码: #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #include<…
[LG3722][HNOI2017]影魔 题面 洛谷 题解 先使用单调栈求出\(i\)左边第一个比\(i\)大的位置\(lp_i\),和右边第一个比\(i\)大的位置\(rp_i\). 考虑\(i\)对答案的贡献,当且仅当\(i\)作为区间\([x+1,y-1]\)的最大值时,\(i\)才对点对\((x,y)\)有贡献. 根据题意,第一种情况\(i\)产生贡献的点对是\((lp_i,rp_i)\), 第二种情况\(i\)产生贡献的点对是\((l[i],i+1\) to \(r[i]-1)\)和\…
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 \(c\)(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面装饰物…
4826: [Hnoi2017]影魔 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 669  Solved: 384[Submit][Status][Discuss] Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样 的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵魂,都有着自己的战斗力,而影魔,靠 这些战斗力提升自己的攻击.奈文摩尔有 n 个…
[BZOJ4826][Hnoi2017]影魔 Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵魂,都有着自己的战斗力,而影魔,靠这些战斗力提升自己的攻击.奈文摩尔有 n 个灵魂,他们在影魔宽广的体内可以排成一排,从左至右标号 1 到 n.第 i个灵魂的战斗力为 k[i],灵魂们以点对的形式为影魔提供攻击力,对于灵魂对 i,j(i<j)来说,若不存…
笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =&\sum_{j=1}^n(a_j^2+b_j^2+i^2-2a_jb_j+2ia_j-2ib_j)\\ =&\sum_{j=1}^na_j^2+\sum_{j=1}^nb_j^2+ni^2+2i\sum_{j=1}^na_j-2i\sum_{j=1}^nb_j-2\sum_{j=1}^na_j…
正解:线段树+扫描线 解题报告: 传送门! 先理解一下这道题,大概是这样儿的: 对于一个点对,如果他们的两端是这段区间的最大值和次大值,那么他们会有p1的贡献 如果他们的两端是最大值和一个非次大值,那么他们会有p2的贡献 问[a,b]内部的点对贡献之和 首先考虑到,两种贡献都要有一个共同点——有最大值 那看到最大值就应该想到单调栈嘛,然后就可以想到,能不能在维护单调栈的时候顺便把答案求出来了 ? 显然是可以的嘛QwQ 那就大力分类讨论一波咯 首先对询问离线,按照右端点排序,然后就直接加入 设现在…
影魔 bzoj-4826 Hnoi-2017 题目大意:给定一个$n$个数的序列$a$,求满足一下情况的点对个数: 注释:$1\le n,m\le 2\cdot 10^5$,$1\le p1,p2\le 1000$. 想法: 我们先用单调栈求出一个数左边第一个比它大的,和右边第一个比它大的.$l_i$和$r_i$就表示这两个值. 然后我们发现,$(l_i,r_i)$就是一个合法的第一个条件的点对. 接下来我们考虑如何统计第二个条件的点对. 第二个条件的话如果还想用刚才的值表示的话,我们发现就是在…
Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵魂,都有着自己的战斗力,而影魔,靠这些战斗力提升自己的攻击.奈文摩尔有 n 个灵魂,他们在影魔宽广的体内可以排成一排,从左至右标号 1 到 n.第 i个灵魂的战斗力为 k[i],灵魂们以点对的形式为影魔提供攻击力,对于灵魂对 i,j(i<j)来说,若不存在 k[s](i<s<j)大于 k[i…
Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵魂,都有着自己的战斗力,而影魔,靠这些战斗力提升自己的攻击.奈文摩尔有 n 个灵魂,他们在影魔宽广的体内可以排成一排,从左至右标号 1 到 n.第 i个灵魂的战斗力为 k[i],灵魂们以点对的形式为影魔提供攻击力,对于灵魂对 i,j(i<j)来说,若不存在 k[s](i<s<j)大于 k[i…
题目背景 影魔,奈文摩尔,据说有着一个诗人的灵魂. 事实上,他吞噬的诗人灵魂早已成千上万. 千百年来,他收集了各式各样的灵魂,包括诗人. 牧师. 帝王. 乞丐. 奴隶. 罪人,当然,还有英雄. 题目描述 每一个灵魂,都有着自己的战斗力,而影魔,靠这些战斗力提升自己的攻击. 奈文摩尔有 n 个灵魂,他们在影魔宽广的体内可以排成一排,从左至右标号 1 到 n.第 i个灵魂的战斗力为 k[i],灵魂们以点对的形式为影魔提供攻击力,对于灵魂对 i, j(i<j)来说,若不存在 ks大 于 k[i]或者…
影魔 这么简单的方法尽然想不到,我是真的菜 对每个点,用单调栈的方式处理出他左右第一个比他大的数的位置,你可以把\(0\)和\(n+1\)设成\(inf\). 显然对于每对\(lef[i]\)和\(rig[i]\)都会做出\(p1\)的贡献 每个\(lef[i]\)会对\(i+1\)到\(rig[i]-1\)做出\(p2\)贡献 同理,每个\(rig[i]\)都会给\(lef[i]+1\)到\(i-1\)做出\(p2\)贡献 用结构体存下来,按顺序用线段树将贡献加入即可 统计贡献,对于每个询问\…
题目:https://www.luogu.org/problemnew/show/P3721 手玩一下即可AC此题. 结论:插入x后,x要么会成为x的前驱的右儿子,要么成为x的后继的左儿子,这取决于它的前驱和后继的深度. 证明:首先可以证明的是,x的前驱和后继一定存在祖先与后代的关系,因为如果不存在此关系,它们的LCA一定和双方更接近. 然后这个结论画画图就比较显然了. 结论:单旋删除最小值后,它连向根节点的这条路径不发生变化,手玩即可证明,改变的只有它的儿子. 那么这个题就显然可以用LCT来维…
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j 位置的数是区间[i,j]的最大值和次大值 提供p2的攻击力:i,j位置的数有一个是区间[i,j]的最大值,另一个不是次大值 记录L[i].R[i] 分别表示i左右第一个大于k[i]的位置 p1的贡献: 1.点对(L[i],R[i])    2.点对(i,i+1) p2的贡献: 1.点对(L[i],…
https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面见原题. 参考了洛谷一些题解. 先推式子,x数组为a,y数组为b,将b数组倍长后有: 因为c的范围在[-m,m]之间,而m=100,且稍加思考后发现k在1,3,4项中是无用的,所以通过枚举c取得1,3,4项和的最小值. 考虑计算第二项,其实是卷积型,实际上将a数组前移并倒转即可得到: 变成了卷积,F…
题目描述 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵魂,都有着自己的战斗力,而影魔,靠这些战斗力提升自己的攻击.奈文摩尔有 n 个灵魂,他们在影魔宽广的体内可以排成一排,从左至右标号 1 到 n.第 i个灵魂的战斗力为 k[i],灵魂们以点对的形式为影魔提供攻击力,对于灵魂对 i,j(i<j)来说,若不存在 k[s](i<s<j)大于 k[i]或者 k[j…
题目链接: https://www.luogu.org/problemnew/show/P3723 题目: 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的…