「AHOI / HNOI2017」单旋】的更多相关文章

「AHOI / HNOI2017」单旋 题目链接 H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必修技能.有一天,邪恶的「卡」带着他的邪恶的「常数」来企图毁灭 H 国.「卡」给 H 国的人洗脑说,splay 如果写成单旋的,将会更快.「卡」称「单旋 splay」为「spaly」.虽说他说的很没道理,但还是有 H 国的人相信了,小 H 就是其中之一,spaly 马上成为他…
#2018. 「HNOI2017」单旋 思路: set+线段树: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #define maxtree maxn<<2 int val[maxtree],tag[maxtree],L[maxtree],R[maxtree],mid[maxtree]; ],f[maxn],root; set<int>Set; inline void in(…
loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变量为k \(\sum\limits_1^n(a_i-(b_i+k))^2\) \(\sum\limits_1^n(a_i^2-2*a_i*(b_i+k)+(b_i+k)^2)\) \(\sum\limits_1^n(a_i^2-2*a_i*b_i-2*a_i*k+b_i^2+2*b_i*k+k^2)…
「AHOI / HNOI2017」影魔 题目描述 解决这类比较复杂的区间贡献问题关键在于找到计算的对象. 比如这道题,我们计算的对象就是区间中间的最大值. 对于点\(i\),我们找到左边第一个比他大的位置\(L\),以及右边第一个比他大的位置\(R\).当\(L,R\)同时被询问的区间包含是,\(i\)就会贡献\(p_1\).当固定左端点为\(L\),右端在\([i+1,R-1]\)之间的时候会贡献\(p_2\):固定右端点\(R\)是同理.还要额外加上\(i,i+1\)贡献的\(p_1\).…
#2023. 「AHOI / HNOI2017」抛硬币   题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生. 勤勉的小 A 为了劝说小 B 早日脱坑,认真学习,决定以抛硬币的形式让小 B 明白他是一个彻彻底底的非洲人,从而对这个游戏绝望.两个人同时抛 bbb 次硬币,如果小 A 的正面朝上的次数大于小 B 正面朝上的次数,则小 A 获胜. 但事实上,小 A…
#2021. 「AHOI / HNOI2017」大佬   题目描述 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢言语.你作为一个 OIer,面对这样的事情非常不开心,于是发表了对大佬不敬的言论. 大佬便对你开始了报复,你也不示弱,扬言要打倒大佬.现在给你讲解一下什么是大佬,大佬除了是神犇以外,还有着强大的自信心,自信程度可以被量化为一个正整数 CCC,想要打倒一个大佬的唯一方法是摧毁 Ta 的自信心,也就是让…
[LOJ 2022]「AHOI / HNOI2017」队长快跑 链接 链接 题解 不难看出,除了影响到起点和终点的射线以外,射线的角度没有意义,因为如果一定要从该射线的射出一侧过去,必然会撞到射线 因此,我们可以把射线的方向规约成两类,分成向上与向下的两种. 不难发现,改变射线的方向后,原有的限制条件并未被改变. 要判断一条线是否规约为"垂直向下",只需判断它的关于P的极角是否在S和T关于P的极角之间. 将所有射线按端点的横坐标排序,依次计算每个端点到S的最短路径上,距离它最近的点nx…
「AHOI / HNOI2017」礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面装饰物的方向是固定的,所以手环不能…
题意: 在一个序列中 如果有一个子区间 它有一个端点是区间最大值 另一个端点不是这个区间的次大值 就会有p2的贡献 它两个端点分别是最大值次大值 就会有p1的贡献 我们发现这两个条件有一个重合的部分 即区间有一个端点是最大值 再次拆分问题 如果我们只考虑这个区间的左端点是最大值 那么我们可以记录每个节点i右边第一个大于它的值的位置R[i] 那么左端点为i的满足条件的区间有[i, i], [i, i + 1], ..... , [i, R[i] - 1] 第一步展开 如果求右端点是最大值的子区间数…
题意:给定xy数组求 \(\sum_{i=0}^{n-1}(x_i+y_{(i+k)\modn}+c)^2\) 题解:先化简可得 \(n*c^2+2*\sum_{i=0}^{n-1}x_i-y_i+\sum_{i=0}^{n-1}x_i^2+y_i^2-2*\sum_{i=0}x_i*y_{(i+k)\modn}\) 主要问题是求最后一项的最大值,把x反过来重复一遍即可fft,相当于\(2*n...n...1\)和\(1....n\)fft,第2*n+1项到n+2项就是不断平移的答案 //#pr…