本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘IO 比较大的操作,如果我们能减少 Shuffle 过程的数据量,那就可以提升整个 MR 作业的性能.我在<大数据技术 - MapReduce的Shuffle及调优> 一文中写到 Shuffle 中会有两次调用 Combiner 的过程,有兴趣的朋友可以再翻回去看看.接下来我们还是以 WordCou…
本章内容我们学习一下 MapReduce 中的 Shuffle 过程,Shuffle 发生在 map 输出到 reduce 输入的过程,它的中文解释是 “洗牌”,顾名思义该过程涉及数据的重新分配,主要分为两部分:1. map 任务输出的数据分组.排序,写入本地磁盘 2. reduce 任务拉取排序.由于该过程涉及排序.磁盘IO.以及网络IO 等消耗资源和 CPU 比较大的操作,因此该过程向来是“兵家必争”之地,即大家会重点优化的一个地方,因此也是大数据面试中经常会被重点考察的地方.本文力求通俗.…
前几章我们介绍了 Hadoop 的 MapReduce 和 HDFS 两大组件,内容比较基础,看完后可以写简单的 MR 应用程序,也能够用命令行或 Java API 操作 HDFS.但要对 Hadoop 做深入的了解,显然不够用.因此本章就深入了解一下 MapReduce 应用的运行机制,从而学习 Hadoop 各个组件之间如何配合完成 MR 作业.本章是基于 Hadoop YARN 框架介绍,YARN(Yet Another Resource Negotiator)是 Hadoop 的集群资源…
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在数以百计数以千计的机器上.例如处理爬取得到的文档.网页请求日志来计算各种衍生数据,如倒排索引,网页文档的各种图结构表示,从每个主机上爬取的文档数,在某一天最频繁的查询的集合. MapReduce 是为处理和生成大数据集的编程模式和相应的实现.用户指定一个 map 函数来处理一个键值对来生成一个键值对…
上一章的 MapReduce 应用中,我们使用了自定义配置,并用 GenericOptionsParser 处理命令行输入的配置,这种方式简单粗暴.但不是 MapReduce 应用常见的写法,本章第一部分将介绍 MapReduce 应用常见的写法,并详细介绍自定义配置以及命令行选项,通过自定义配置我们可以灵活的控制 MapReduce 应用而不需要修改代码并打包.第二部分将介绍开发 MapReduce 应用的单元测试,单元测试的重要性不言而喻,是每个程序员必备技能. 带有自定义配置的 MapRe…
摘要:距离上一次MaxCompute新功能的线上发布已经过去了大约一个季度的时间,而在这一段时间里,MaxCompute不断地在增加新的功能和特性,比如参数化视图.UDF支持动态参数.支持分区裁剪.生成建表DDL语句功能等功能都已经得到了广大开发者的广泛使用.那么,近期MaxCompute究竟还有哪些新特性呢?本文就为大家揭晓答案. 以下内容根据视频及PPT整理而成. MaxCompute与阿里云大数据产品解决方案 在介绍MaxCompute新功能前,我们先快速对阿里云的大数据产品解决方案进行介…
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可用于生成决策的时间非常少:1秒定律,这和传统的数据挖掘技术有着本质区别(谷歌的dremel可以在1秒内调动上千台服务器处理PB级数据) 价值密度低,商业价值高 大数据影响: 对科学研究影响:出现科学研究第四方式数据(前三个分别是实验.理论.计算) 对思维方式影响:全样而非抽样.效率而非准确.相关而非…
2013年12月5日-6日参加了为期两天的2013中国大数据技术大会(Big Data Technology Conference, BDTC2013),本期会议主题是:“应用驱动的架构与技术 ”.大数据概念最近真是火得不行,从大会多达7个的“大数据架构与系统”.“大数据技术”.“大数据应用”.“大数据研究与发展”.“大数据基准测试”“智能交通与大数据”以及“传统行业如何驾驭大数据”主题论坛,再到现场爆棚的人群,可见大家拥抱大数据的高涨热情. 在9月份读完了一本<大数据时代>,后面又听大学老师…
[摘要] 知乎上一篇很不错的科普文章,介绍大数据技术生态圈(Hadoop.Hive.Spark )的关系. 链接地址:https://www.zhihu.com/question/27974418 [问题] 如何用形象的比喻描述大数据的技术生态?Hadoop.Hive.Spark 之间是什么关系? [答案1] 学习很重要的是能将纷繁复杂的信息进行归类和抽象. 对应到大数据技术体系,虽然各种技术百花齐放,层出不穷,但大数据技术本质上无非解决4个核心问题. 1.存储,海量的数据怎样有效的存储?主要包…
目前大数据已经成为了各家互联网公司的核心资产和竞争力了,其实不仅是互联网公司,包括传统企业也拥有大量的数据,也想把这些数据发挥出作用.在这种环境下,大数据技术的重要性和火爆程度相信没有人去怀疑. 而AI人工智能又是基于大数据技术基础上发展起来的,大数据技术已经很清晰了,但是AI目前还未成熟啊,所以本文就天马行空一下,从大数据的技术变迁历史中来找出一些端倪,猜一猜AI人工智能未来的发展. 最近断断续续的在看<极客时间>中「 从0开始学大数据 」专栏的文章,受益匪浅,学到了很多.尤其是非常喜欢作者…