1. 需求:比如有一个网站,记录下了每次请求的访问的耗时,需要统计tp50,tp90,tp99 tp50:50%的请求的耗时最长在多长时间tp90:90%的请求的耗时最长在多长时间tp99:99%的请求的耗时最长在多长时间 PUT /website { "mappings": { "logs": { "properties": { "latency": { "type": "long"…
1. 统计指定品牌下每个颜色的销量 任何的聚合,都必须在搜索出来的结果数据中进行,搜索结果,就是聚合分析操作的scope GET /tvs/sales/_search { , "query": { "term": { "brand": { "value": "小米" } } }, "aggs": { "group_by_color": { "terms&qu…
以一个家电卖场中的电视销售数据为背景,来对各种品牌,各种颜色的电视的销量和销售额,进行各种各样角度的分析,首先建立电视销售的索引,然后 添加几条销售记录 PUT /tvs { "mappings": { "sales": { "properties": { "price": { "type": "long" }, "color": { "type"…
1. fielddata核心原理 fielddata加载到内存的过程是lazy加载的,对一个analzyed field执行聚合时,才会加载,而且是field-level加载的,一个index的一个field,所有doc都会被加载,而不是少数doc,不是index-time创建,是query-time创建 2. fielddata内存限制 indices.fielddata.cache.size: 20%,超出限制,清除内存已有fielddata数据,fielddata占用的内存超出了这个比例的…
首先明白两个核心概念:bucket和metric 1. bucket:一个数据分组 city name 北京 小李 北京 小王 上海 小张 上海 小丽 上海 小陈 基于city划分buckets,划分出来两个bucket,一个是北京bucket,一个是上海bucket 北京bucket:包含了2个人,小李,小王上海bucket:包含了3个人,小张,小丽,小陈 按照某个字段进行bucket划分,那个字段的值相同的那些数据,就会被划分到一个bucket中,有一些mysql的sql知识的话,聚合,首先…
一.Index Template与Dynamic Template的概念 1.Index Template:它是用来根据提前设定的Mappings和Settings,并按照一定的规则,自动匹配到新创建的索引上. 1)模板仅是一个索引被创建时才会起作用,修改模板并不会影响已创建的索引: 2)可以设定多个索引模板,这些设置会被merge在一起: 3)通过指定order的数值,控制merge的过程: 2.Index Template的工作方式如下: 当一个索引被创建时,会执行如下操作: 1)应用Ela…
一.聚合分析简介 1. ES聚合分析是什么? 聚合分析是数据库中重要的功能特性,完成对一个查询的数据集中数据的聚合计算,如:找出某字段(或计算表达式的结果)的最大值.最小值,计算和.平均值等.ES作为搜索引擎兼数据库,同样提供了强大的聚合分析能力. 对一个数据集求最大.最小.和.平均值等指标的聚合,在ES中称为指标聚合   metric 而关系型数据库中除了有聚合函数外,还可以对查询出的数据进行分组group by,再在组上进行指标聚合.在 ES 中group by 称为分桶,桶聚合 bucke…
一. 搜索1.DSL搜索 全部数据没有任何条件 GET /shop/goods/_search { "query": { "match_all": {} } } 查询名称包含 xxx 的商品,同时按照价格降序排序 GET /shop/goods/_search { "query" : { "match" : { "name" : "xxx" } }, "sort":…
1. 计算每个tag下的商品数量 GET /ecommerce/product/_search { "aggs": { "group_by_tags": { "terms": { "field": "tags" } } } } 2. 将文本field的fielddata属性设置为true PUT /ecommerce/_mapping/product { "properties": {…
1.什么是聚合分析? 答:聚合分析,英文为Aggregation,是es除搜索功能外提供的针对es数据做统计分析的功能.特点如下所示: a.功能丰富,提供Bucket.Metric.Pipeline等多种分析方式,可以满足大部分的分析需求. b.实时性高,所有的计算结果都是即时返回的,而hadoop等大数据系统一般都是T+1级别的. 2.聚合分析的分类.为了便于理解,es将聚合分析主要分为如下4类. 答:a.Bucket,分桶类型,类似SQL语法中的group bu语法. b.Metric,指标…