https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text Classificatio> 迁移学习在计算机视觉方面取得了很多成功,但是同样的方法应用在NLP领域却行不通.文本分类还是需要从零开始训练模型.本文的作者提出了一种针对NLP的有效的迁移学习方法,通用语言模型微调(ULMFiT)并介绍了用于微调模型的关键技巧. 越底层的特征越通用,越顶层的特征越特殊…
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:43 ttv56 阅读数 4552更多 分类专栏: 自然语言处理   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u014475479/article/details/81253506 本文发表于自然…
论文链接:https://aclweb.org/anthology/P18-1031 对文章内容的总结 文章研究了一些在general corous上pretrain LM,然后把得到的model transfer到text classiffication上 整个过程的训练技巧. 这些技巧的切入点是learning rate. 主要是三个: (1)discriminative fine-tuning (其中的discriminative 指 fine-tune each layer with d…
Direct && Noise Channel 进一步把语言模型推理的模式分为了: 直推模式(Direct): 噪声通道模式(Noise channel). 直观来看: Direct 模式 Noise Channel 模式 也就是说把数据和标签调换了位置. 公式推导 Direct: $$y_{test}=argmax\;P(y_{test}|\theta,c,x_{test})\;\;\;c=context$$ Noise Channel: $$y_{test}=argmax\;P(y)P…
KLMo:建模细粒度关系的知识图增强预训练语言模型 (KLMo: Knowledge Graph Enhanced Pretrained Language Model with Fine-Grained Relationships) 论文地址:https://aclanthology.org/2021.findings-emnlp.384.pdf 摘要 知识图谱(KG)中实体之间的交互作用为语言表征学习提供了丰富的知识.然而,现有的知识增强型预训练语言模型(PLMS)只关注实体信息,而忽略了实体…
论文分享第三期-2019.03.29 Fully convolutional networks for semantic segmentation,CVPR 2015,FCN 一.全连接层与全局平均池化 在介绍FCN网络的全卷积连接之前,先介绍一下全连接层(fully connected layers)和全局平均池化(global average pooling) 全连接层可以将前面的多层卷积学到的“分布式特征表示”(或者说是高层的鲁棒特征)映射到样本类别空间,与softmax组合具有“分类器”…
A Neural Probabilistic Language Model,这篇论文是Begio等人在2003年发表的,可以说是词表示的鼻祖.在这里给出简要的译文 A Neural Probabilistic Language Model 一个神经概率语言模型 摘  要 统计语言模型的一个目标是学习一种语言的单词序列的联合概率函数.因为维数灾难,这是其本质难点:将被模型测试的单词序列很可能是与在训练中见过的所有单词的序列都不相同.传统的但非常成功的基于n-gram的方法通过将出现在训练集很短的重…
(转载自:WikiPedia) Fine tuning is a process to take a network model that has already been trained for a given task, and make it perform a second similar task. Assuming the original task is similar to the new task, using a network that has already been d…
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…
[论文分享] DHP: Differentiable Meta Pruning via HyperNetworks authors: Yawei Li1, Shuhang Gu, etc. comments: ECCV2020 cite: [2003.13683] DHP: Differentiable Meta Pruning via HyperNetworks (arxiv.org) code: ofsoundof/dhp: This is the official implementati…