【Math】矩阵求导】的更多相关文章

今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A' 1. 矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y = [y(ij)] --> dY/…
矩阵求导 参考链接: https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector_identities…
https://en.wikipedia.org/wiki/Matrix_calculus http://blog.sina.com.cn/s/blog_7959e7ed0100w2b3.html…
回归中最为基础的方法, 最小二乘法. \[ \begin{align*} J_{LS}{(\theta)} &= \frac { 1 }{ 2 } { \left\| A\vec { x } -\vec { b } \right\| }^{ 2 }\quad \\ \end{align*} \] 向量的范数定义 \[ \begin{align*} \vec x &= [x_1,\cdots,x_n]^{\rm T}\\ \|\vec x\|_p &= \left( \sum_{i=…
自动求导机制是pytorch中非常重要的性质,免去了手动计算导数,为构建模型节省了时间.下面介绍自动求导机制的基本用法. #自动求导机制 import torch from torch.autograd import Variable # 1.简单的求导(求导对象是标量) x = Variable(torch.Tensor([2]),requires_grad=True) y = (x + 2) ** 2 + 3 print(y) y.backward() print(x.grad) #对矩阵求…
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个普通的 RNN 神经网络如下图所示: 其中 \(x^{\langle t \rangle}\) 表示某一个输入数据在 \(t\) 时刻的输入:\(a^{\langle t \rangle}\) 表示神经网络在 \(t\) 时刻时的hidden state,也就是要传送到 \(t+1\) 时刻的值:\…
一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvision的whl文件 使用pip install whl_dir安装torch,并且同时安装torchvision 二.初步使用pytorch # -*- coding:utf-8 -*- __author__ = 'Leo.Z' import torch import time # 查看torch版本…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
Softmax是啥? Hopfield网络的能量观点 1982年的Hopfiled网络首次将统计物理学的能量观点引入到神经网络中, 将神经网络的全局最小值求解,近似认为是求解热力学系统的能量最低点(最稳定点). 为此,特地为神经网络定义了神经网络能量函数$E(x|Label)$,其中$x$为输入. $E(x|Label)=-\frac{1}{2}Wx \Delta Y  \quad where \quad \Delta Y=y-label$   (省略Bias项) 值得注意的是,这套山寨牌能量函…
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解,如果理解成每个类的打分函数,则会直观许多.预测时我们把样本分配到得分最高的类. Notations: \(x\):输入向量,\(d\times 1\)列向量,\(d\)是feature数 \(W\):权重矩阵,\(c\times d\)矩阵,\(c\)是label数 \(b\):每个类对应超平面的…
如果L全在地面上: 输出 h * D / H 如果L全在墙上: 输出 h 否则: (D - X ) / X = Y / (H - h) L = D - X + h - Y 然后对L求导即可 #include <stdio.h> #include <string.h> #include <math.h> #include <algorithm> using namespace std; int main(){ double H,h,D,x,y,x0; int…
目录 符号定义 对 softmax 求导 对 cross-entropy 求导 对 softmax 和 cross-entropy 一起求导 References 在论文中看到对 softmax 和 cross-entropy 的求导,一脸懵逼,故来整理整理. 以 softmax regression 为例来展示求导过程,softmax regression 可以看成一个不含隐含层的多分类神经网络,如 Fig. 1 所示. Fig. 1 Softmax Regression. softmax r…
figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-width: 100%; vertical-align: middle; } button, input, select, textarea { color: inherit; font-style: inherit; font-variant: inherit; font-weight: inherit…
前言:softmax中的求导包含矩阵与向量的求导关系,记录的目的是为了回顾. 下图为利用softmax对样本进行k分类的问题,其损失函数的表达式为结构风险,第二项是模型结构的正则化项. 首先,每个queue:x(i)的特征维度是 n , 参数 θ 是一个 n×k 的矩阵,输出的结果 y(i) 为一个 k×1 的向量,其中第 j 个元素对应元素的 e 指数为该 queue 属于第 j 类的概率(未归一化).所以虽然损失函数 J(θ) 是一个常数,但是它的自变量为一个矩阵 Θ 和 一个特征向量 x(…
NDArray可以很方便的求解导数,比如下面的例子:(代码主要参考自https://zh.gluon.ai/chapter_crashcourse/autograd.html) 用代码实现如下: import mxnet.ndarray as nd import mxnet.autograd as ag x = nd.array([[1,2],[3,4]]) print(x) x.attach_grad() #附加导数存放的空间 with ag.record(): y = 2*x**2 y.ba…
torch.autograd 包提供Tensor所有操作的自动求导方法. 数据结构介绍 autograd.Variable 这是这个包中最核心的类. 它包装了一个Tensor,并且几乎支持所有的定义在其上的操作.一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度,Variable有三个属性: 访问原始的tensor使用属性.data: 关于这一Variable的梯度则集中于 .grad: .creator反映了创建者,标识了是否由用户使用.Variable直接创建(No…
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是: $$  S_i = \frac{e^j }{ \sum\nolimits_{j} e^j}  \tag{1}$$ 更形象的如下图表示: softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
1.sigmoid函数 ​ sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: ​ 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 从指数函数到sigmoid ​ 首先我们来画出指数函数的基本图形: ​ 从上图,我们得到了这样的几个信息,指数函数过(0,1)点,单调递增/递减,定义域为(−∞,+∞),值域为(0,+∞),再来我们看一下sigmoid函数的图像: ​ ​ 如果直接把e−x放到分母上,就与ex图像一样了,所以分母加上…
题目描述 输入 输出 样例输入 2x^2+3x+1 样例输出 4x+3 数据范围 样例解释 求导的意思: 多项式是由若干个单项式构成的 单项式的一般形式是ax^b,其中ab都是常数,x是自变量 对于单项式ax^b求导,结果就是(ab)x^(b-1) 对于多项式求导,就是把构成它的所有单项式分别求导之后相加 特别地,对于ax^0,即对常数a求导,结果是0 解法 模拟即可: 注意细节: 1.系数可为负: 2.处理+-号 3.当系数为1时,系数省略: 4.特别地:输入2+2x^2,输出2x. 代码 #…
Pytorch中神经网络包中最核心的是autograd包,我们先来简单地学习它,然后训练我们第一个神经网络. autograd包为所有在tensor上的运算提供了自动求导的支持,这是一个逐步运行的框架,也就意味着后向传播过程是按照你的代码定义的,并且单个循环可以不同 我们通过一些简单例子来了解 Tensor torch.tensor是这个包的基础类,如果你设置.requires_grads为True,它就会开始跟踪上面的所有运算.如果你做完了运算使用.backward(),所有的梯度就会自动运算…
考虑不可分的例子         通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算     梯度的下降法的梯度计算                 关于线性和非线性的隐层 非线性隐层使得网络可以计算更加复杂的函数 线性隐层不能增强网络的表述能力,它们被用来做降维,减少训练需要的参数数目,这在nlp相关的模型中 经常用到(embedding vector)     一个back prop的例子        …
02-线性结构1. 一元多项式求导 (25) 设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数.数字间以空格分隔,但结尾不能有多余空格.注意“零多项式”的指数和系数都是0,但是表示为“0 0”. 输入样例: 3 4 -5 2 6 1 -2 0 输出样例: 12 3 -10 1 6 0 最简单的方式是用…
1010. 一元多项式求导 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数.数字间以空格分隔,但结尾不能有多余空格.注意“零多项式”的指数和系数都是0,但是表示为“0 0”. 输入样…
1010. 一元多项式求导 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数.数字间以空格分隔,但结尾不能有多余空格.注意“零多项式”的指数和系数都是0,但是表示为“0 0”. 输入样…
内容来自ufldl,代码参考自tornadomeet的cnnCost.m 1.Forward Propagation convolvedFeatures = cnnConvolve(filterDim, numFilters, images, Wc, bc); %对于第一个箭头 activationsPooled = cnnPool(poolDim, convolvedFeatures);%对应第二个箭头 %对应第3个箭头,即平铺开 activationsPooled = reshape(act…
1 对一维函数的求导及求特定函数处的变量值 %%最简单的一阶单变量函数进行求导 function usemyfunArray() %主函数必须位于最上方 clc clear syms x %syms x代表着声明符号变量x,只有声明了符号变量才可以进行符号运算,包括求导. %f(x)=sin(x)+x^2; %我们输入的要求导的函数 y = diff(sin(x)+x^); %代表着对单变量函数f(x)求一阶导数 disp('f(x)=sin(x)+x^2的导数是'); pretty(y); %…
Ipad,IPhone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 100 Accepted Submission(s): 46   Problem Description In ACM_DIY, there is one master called “Lost”. As we know he is a “-2Dai”, which me…
文章目录 ★引子 ★求导 ★最初的想法 ★初步的想法 ★后来的想法 ★最后的想法 ★编程范式 ★结尾 首先声明一点,本文主要介绍的是面向对象(OO)的思想,顺便谈下函数式编程,而不是教你如何准确地.科学地用java求出函数在一点的导数. ★引子 def d(f) : def calc(x) : dx = 0.000001 # 表示无穷小的Δx return (f(x+dx) - f(x)) / dx # 计算斜率.注意,此处引用了外层作用域的变量 f return calc # 此处用函数作为返…